115 research outputs found
Compact and De-biased Negative Instance Embedding for Multi-Instance Learning on Whole-Slide Image Classification
Whole-slide image (WSI) classification is a challenging task because 1)
patches from WSI lack annotation, and 2) WSI possesses unnecessary variability,
e.g., stain protocol. Recently, Multiple-Instance Learning (MIL) has made
significant progress, allowing for classification based on slide-level, rather
than patch-level, annotations. However, existing MIL methods ignore that all
patches from normal slides are normal. Using this free annotation, we introduce
a semi-supervision signal to de-bias the inter-slide variability and to capture
the common factors of variation within normal patches. Because our method is
orthogonal to the MIL algorithm, we evaluate our method on top of the recently
proposed MIL algorithms and also compare the performance with other
semi-supervised approaches. We evaluate our method on two public WSI datasets
including Camelyon-16 and TCGA lung cancer and demonstrate that our approach
significantly improves the predictive performance of existing MIL algorithms
and outperforms other semi-supervised algorithms. We release our code at
https://github.com/AITRICS/pathology_mil.Comment: Accepted to ICASSP 202
Distinct Mechanisms for Ctr1-mediated Copper and Cisplatin Transport
The Ctr1 family of integral membrane proteins is necessary for high affinity copper uptake in eukaryotes. Ctr1 is also involved in cellular accumulation of cisplatin, a platinum-based anticancer drug. Although the physiological role of Ctr1 has been revealed, the mechanism of action of Ctr1 remains to be elucidated. To gain a better understanding of Ctr1-mediated copper and cisplatin transport, we have monitored molecular dynamics and transport activities of yeast Saccharomyces cerevisiae Ctr1 and its mutant alleles. Co-expression of functional Ctr1 monomers fused with either cyan or yellow fluorescent protein resulted in fluorescence resonance energy transfer (FRET), which is consistent with multimer assembly of Ctr1. Copper near the Km value of Ctr1 enhanced FRET in a manner that correlated with cellular copper transport. In vitro cross-linking of Ctr1 confirmed that copper-induced FRET reflects conformational changes within pre-existing Ctr1 complexes. FRET assays in membrane-disrupted cells and protein extracts showed that intact cell structure is necessary for Ctr1 activity. Despite Ctr1-dependent cellular accumulation, cisplatin did not change Ctr1 FRET nor did it attenuate copper-induced FRET. A Ctr1 allele defective in copper transport enhanced cellular cisplatin accumulation. N-terminal methionine-rich motifs that are dispensable for copper transport play a critical role for cisplatin uptake. Taken together, our data reveal functional roles for structural remodeling of the Ctr1 multimeric complex in copper transport and suggest distinct mechanisms employed by Ctr1 for copper and cisplatin transport
Organ-specific regulation of ATP7A abundance is coordinated with systemic copper homeostasis
Copper (Cu) is an essential cofactor for various enzymatic activities including mitochondrial electron transport, iron mobilization, and peptide hormone maturation. Consequently, Cu dysregulation is associated with fatal neonatal disease, liver and cardiac dysfunction, and anemia. While the Cu transporter ATP7A plays a major role in both intestinal Cu mobilization to the periphery and prevention of Cu over-accumulation, it is unclear how regulation of ATP7A contributes to Cu homeostasis in response to systemic Cu fluctuation. Here we show, using Cu-deficient mouse models, that steadystate levels of ATP7A are lower in peripheral tissues (including the heart, spleen, and liver) under Cu deficiency and that subcutaneous administration of Cu to these animals restore normal ATP7A levels in these tissues. Strikingly, ATP7A in the intestine is regulated in the opposite manner - low systemic Cu increases ATP7A while subcutaneous Cu administration decreases ATP7A suggesting that intestinespecific non-autonomous regulation of ATP7A abundance may serve as a key homeostatic control for Cu export into the circulation. Our results support a systemic model for how a single transporter can be inversely regulated in a tissue-specific manner to maintain organismal Cu homeostasis
Detecting protein and post-translational modifications in single cells with iDentification and qUantification sEparaTion (DUET)
While technologies for measuring transcriptomes in single cells have matured, methods for measuring proteins and their post-translational modification (PTM) states in single cells are still being actively developed. Unlike nucleic acids, proteins cannot be amplified, making detection of minute quantities from single cells difficult. Here, we develop a strategy to detect targeted protein and its PTM isoforms in single cells. We barcode the proteins from single cells by tagging them with oligonucleotides, pool barcoded cells together, run bulk gel electrophoresis to separate protein and its PTM isoform and quantify their abundances by sequencing the oligonucleotides associated with each protein species. We used this strategy, iDentification and qUantification sEparaTion (DUET), to measure histone protein H2B and its monoubiquitination isoform, H2Bub, in single yeast cells. Our results revealed the heterogeneities of H2B ubiquitination levels in single cells from different cell-cycle stages, which is obscured in ensemble measurements
Detecting protein and post-translational modifications in single cells with iDentification and qUantification sEparaTion (DUET)
While technologies for measuring transcriptomes in single cells have matured, methods for measuring proteins and their post-translational modification (PTM) states in single cells are still being actively developed. Unlike nucleic acids, proteins cannot be amplified, making detection of minute quantities from single cells difficult. Here, we develop a strategy to detect targeted protein and its PTM isoforms in single cells. We barcode the proteins from single cells by tagging them with oligonucleotides, pool barcoded cells together, run bulk gel electrophoresis to separate protein and its PTM isoform and quantify their abundances by sequencing the oligonucleotides associated with each protein species. We used this strategy, iDentification and qUantification sEparaTion (DUET), to measure histone protein H2B and its monoubiquitination isoform, H2Bub, in single yeast cells. Our results revealed the heterogeneities of H2B ubiquitination levels in single cells from different cell-cycle stages, which is obscured in ensemble measurements
Oma1 Links Mitochondrial Protein Quality Control and TOR Signaling To Modulate Physiological Plasticity and Cellular Stress Responses
ACKNOWLEDGMENTS We thank Dennis Winge (University of Utah) and the members of the Khalimonchuk laboratory for critical comments. We also thank Christoph Schuller (University of Natural Resources, Austria) and Paul Herman (Ohio State University) for reagents. We acknowledge the expert technical assistance of Nataliya Zahayko. We also thank Donna MacCallum for help with the Candida virulence assays. This research was supported by grants from the NIH (P30GM103335 and 5R01GM108975 [O.K.], GM071775-06 and GM105781-01 [A.B.], DK079209 [J.L.]), the U.K. Biotechnology and Biological Research Council (BB/K017365/1 [A.J.P.B.]), the U.K. Medical Research Council (MR/ M026663/1 [A.J.P.B.]), and the European Research Council (C-2009- AdG-249793 [A.J.P.B.]). We declare that we have no competing financial interests. FUNDING INFORMATION This work, including the efforts of Alistair J. P. Brown, was funded by Biotechnology and Biological Research Counsil (BB/K017365/1). This work, including the efforts of Oleh Khalimonchuk, was funded by HHS | National Institutes of Health (NIH) (5R01GM108975). This work, including the efforts of Oleh Khalimonchuk, was funded by HHS | National Institutes of Health (NIH) (P30GM103335).This work, including the efforts of Antoni Barrientos, was funded by HHS | National Institutes of Health (NIH) (GM071775-06). This work, including the efforts of Antoni Barrientos, was funded by HHS | National Institutes of Health (NIH) (GM105781-01). This work, including the efforts of Jaekwon Lee, was funded by HHS | National Institutes of Health (NIH) (DK079209). This work, including the efforts of Alistair J. P. Brown, was funded by Medical Research Council (MRC) (MR/M026663/1). This work, including the efforts of Alistair J. P. Brown, was funded by EC | European Research Council (ERC) (C-2009-AdG-249793).Peer reviewedPublisher PD
Cadmium and Secondary Structure-dependent Function of a Degron in the Pca1p Cadmium Exporter
Protein turnover is a critical cellular process regulating biochemical pathways and destroying terminally misfolded or damaged proteins. Pca1p, a cadmium exporter in the yeast Saccharomyces cerevisiae, is rapidly degraded by the endoplasmic reticulum-associated degradation (ERAD) system via a cis-acting degron that exists at the 250–350 amino acid region of Pca1p and is transferable to other proteins to serve as a degradation signal. Cadmium stabilizes Pca1p in a manner dependent on the degron. This suggested that cadmium-mediated masking of the degron impedes its interaction with the molecular factors involved in the ERAD. The characteristics and mechanisms of action of the degron in Pca1p and most of those in other proteins however remain to be determined. The results presented here indicate that specific cysteine residues in a degron of Pca1p sense cadmium.Anunbiased approach selecting non-functional degrons indicated a critical role of hydrophobic amino acids in the degron for its function.Asecondary structure modeling predicted the formation of an amphipathic helix. Site-directed mutagenesis confirmed the functional significance of the hydrophobic patch. Last, hydrophobic amino acids in the degron- and cadmium-binding region affected the interaction of Pca1p with the Ssa1p molecular chaperone, which is involved in ERAD. These results reveal the mechanism of action of the degron, which might be useful for the identification and characterization of other degrons
Size-regulated group separation of CoFe2O4 nanoparticles using centrifuge and their magnetic resonance contrast properties
Magnetic nanoparticle (MNP)-based magnetic resonance imaging (MRI) contrast agents (CAs) have been the subject of extensive research over recent decades. The particle size of MNPs varies widely and is known to influence their physicochemical and pharmacokinetic properties. There are two commonly used methods for synthesizing MNPs, organometallic and aqueous solution coprecipitation. The former has the advantage of being able to control the particle size more effectively; however, the resulting particles require a hydrophilic coating in order to be rendered water soluble. The MNPs produced using the latter method are intrinsically water soluble, but they have a relatively wide particle size distribution. Size-controlled water-soluble MNPs have great potential as MRI CAs and in cell sorting and labeling applications. In the present study, we synthesized CoFe(2)O(4) MNPs using an aqueous solution coprecipitation method. The MNPs were subsequently separated into four groups depending on size, by the use of centrifugation at different speeds. The crystal shapes and size distributions of the particles in the four groups were measured and confirmed by transmission electron microscopy and dynamic light scattering. Using X-ray diffraction analysis, the MNPs were found to have an inverse spinel structure. Four MNP groups with well-selected semi-Gaussian-like diameter distributions were obtained, with measured T(2) relaxivities (r(2)) at 4.7 T and room temperature in the range of 60 to 300 mM(−1)s(−1), depending on the particle size. This size regulation method has great promise for applications that require homogeneous-sized MNPs made by an aqueous solution coprecipitation method. Any group of the CoFe(2)O(4) MNPs could be used as initial base cores of MRI T(2) CAs, with almost unique T(2) relaxivity owing to size regulation. The methodology reported here opens up many possibilities for biosensing applications and disease diagnosis. PACS: 75.75.Fk, 78.67.Bf, 61.46.D
Enzymatic defects underlying hereditary glutamate cysteine ligase deficiency are mitigated by association of the catalytic and regulatory subunits
Glutamate cysteine ligase (GCL) deficiency is a rare autosomal recessive trait that compromises
production of glutathione, a critical redox buffer and enzymatic cofactor. Patients have markedly
reduced levels of erythrocyte glutathione, leading to hemolytic anemia and in some cases,
impaired neurological function. Human glutamate cysteine ligase is a heterodimer comprised of a
catalytic (GCLC) and a regulatory subunit (GCLM), which catalyzes the initial rate limiting step
in glutathione production. Four clinical missense mutations have been identified within GCLC:
Arg127Cys, Pro158Leu, His370Leu, and Pro414Leu. Here, we have evaluated the impacts of
these mutations on enzymatic function in vivo and in vitro to gain further insights into the
pathology. Embryonic fibroblasts from GCLC null mice were transiently transfected with wildtype
or mutant GCLC and cellular glutathione levels were determined. The four mutant
transfectants each had significantly lower levels of glutathione relative to wild-type, with the
Pro414Leu mutant being most compromised. The contributions of the regulatory subunit to GCL
activity were investigated using an S. cerevisiae model system. Mutant GCLC alone could not
complement a glutathione-deficient strain and required the concurrent addition of GCLM to
restore growth. Kinetic characterizations of the recombinant GCLC mutants indicated that the
Arg127Cys, His370Leu, and Pro414Leu mutants have compromised enzymatic activity that can
largely be rescued by the addition of GCLM. Interestingly, the Pro158Leu mutant has kinetic
constants comparable to wild-type GCLC, suggesting that heterodimer formation is needed for
stability in vivo. Strategies that promote heterodimer formation and persistence would be effective
therapeutics for the treatment of GCL deficiency
Endoplasmic Reticulum-associated Degradation of Pca1p, a Polytopic Protein, via Interaction with the Proteasome at the Membrane
Endoplasmic reticulum-associated degradation (ERAD) plays a critical role in the destruction of terminally misfolded proteins at the secretory pathway. The system also regulates expression levels of several proteins such as Pca1p, a cadmium exporter in yeast. To gain better insight into the mechanisms underlying ERAD of Pca1p and other polytopic proteins by the proteasome in the cytosol, our study determined the roles for the molecular factors of ERAD in dislodging Pca1p from the endoplasmic reticulum (ER). Inactivation of the 20S proteasome leads to accumulation of ubiquitinated Pca1p in the ER membrane, suggesting a role for the proteasome in extraction of Pca1p from the ER. Pca1p formed a complex with the proteasome at the membrane in a Doa10p E3 ligase-dependent manner. Cdc48p is required for recruiting the proteasome to Pca1p. Although the Ufd2p E4 ubiquitin chain extension enzyme is involved in efficient degradation of Pca1p, Ufd2p-deficient cells did not affect the formation of a complex between Pca1p and the proteasome. Two other polytopic membrane proteins undergoing ERAD, Ste6*p and Hmg2p, also displayed the same outcomes observed for Pca1p. However, poly-ubiquitinated Cpy1*p, a luminal ERAD substrate, was detected in the cytosol independent of proteolytic activities of the proteasome. These results indicate that extraction and degradation of polytopic membrane proteins at the ER is a coupled event. This mechanism would relieve the cost of exposed hydrophobic domains in the cytosol during ERAD
- …