2,056 research outputs found

    Long-Term Testing and Properties of Acrylic for the Daya Bay Antineutrino Detectors

    Full text link
    The Daya Bay reactor antineutrino experiment has recently measured the neutrino mixing parameter sin22{\theta}13 by observing electron antineutrino disappearance over kilometer-scale baselines using six antineutrino detectors at near and far distances from reactor cores at the Daya Bay nuclear power complex. Liquid scintillator contained in transparent target vessels is used to detect electron antineutrinos via the inverse beta-decay reaction. The Daya Bay experiment will operate for about five years yielding a precision measurement of sin22{\theta}13. We report on long-term studies of poly(methyl methacrylate) known as acrylic, which is the primary material used in the fabrication of the target vessels for the experiment's antineutrino detectors. In these studies, acrylic samples are subjected to gaseous and liquid environmental conditions similar to those experienced during construction, transport, and operation of the Daya Bay acrylic target vessels and detectors. Mechanical and optical stability of the acrylic as well as its interaction with detector liquids is reported.Comment: 17 pages, 13 figures Submitted to JINS

    Search for Sterile Neutrinos with a Radioactive Source at Daya Bay

    Get PDF
    The far site detector complex of the Daya Bay reactor experiment is proposed as a location to search for sterile neutrinos with > eV mass. Antineutrinos from a 500 kCi 144Ce-144Pr beta-decay source (DeltaQ=2.996 MeV) would be detected by four identical 20-ton antineutrino targets. The site layout allows flexible source placement; several specific source locations are discussed. In one year, the 3+1 sterile neutrino hypothesis can be tested at essentially the full suggested range of the parameters Delta m^2_{new} and sin^22theta_{new} (90% C.L.). The backgrounds from six nuclear reactors at >1.6 km distance are shown to be manageable. Advantages of performing the experiment at the Daya Bay far site are described

    Recombination in polymer-fullerene bulk heterojunction solar cells

    Full text link
    Recombination of photogenerated charge carriers in polymer bulk heterojunction (BHJ) solar cells reduces the short circuit current (Jsc) and the fill factor (FF). Identifying the mechanism of recombination is, therefore, fundamentally important for increasing the power conversion efficiency. Light intensity and temperature dependent current-voltage measurements on polymer BHJ cells made from a variety of different semiconducting polymers and fullerenes show that the recombination kinetics are voltage dependent and evolve from first order recombination at short circuit to bimolecular recombination at open circuit as a result of increasing the voltage-dependent charge carrier density in the cell. The "missing 0.3V" inferred from comparison of the band gaps of the bulk heterojunction materials and the measured open circuit voltage at room temperature results from the temperature dependence of the quasi-Fermi-levels in the polymer and fullerene domains - a conclusion based upon the fundamental statistics of Fermions.Comment: Accepted for publication in Physical Review B. http://prb.aps.org/accepted/B/6b07cO3aHe71bd1b149e1425e58bf2868cda2384d?ajax=1&height=500&width=50

    Constraining the Leading Weak Axial Two-body Current by SNO and Super-K

    Get PDF
    We analyze the Sudbury Neutrino Observatory (SNO) and Super-Kamiokande (SK) data on charged current (CC), neutral current (NC) and neutrino electron elastic scattering (ES) reactions to constrain the leading weak axial two-body current parameterized by L_1A. This two-body current is the dominant uncertainty of every low energy weak interaction deuteron breakup process, including SNO's CC and NC reactions. Our method shows that the theoretical inputs to SNO's determination of the CC and NC fluxes can be self-calibrated, be calibrated by SK, or be calibrated by reactor data. The only assumption made is that the total flux of active neutrinos has the standard ^8B spectral shape (but distortions in the electron neutrino spectrum are allowed). We show that SNO's conclusion about the inconsistency of the no-flavor-conversion hypothesis does not contain significant theoretical uncertainty, and we determine the magnitude of the active solar neutrino flux

    Dimerization structures on the metallic and semiconducting fullerene tubules with half-filled electrons

    Full text link
    Possible dimerization patterns and electronic structures in fullerene tubules as the one-dimensional pi-conjugated systems are studied with the extended Su-Schrieffer-Heeger model. We assume various lattice geometries, including helical and nonhelical tubules. The model is solved for the half-filling case of π\pi-electrons. (1) When the undimerized systems do not have a gap, the Kekule structures prone to occur. The energy gap is of the order of the room temperatures at most and metallic properties would be expected. (2) If the undimerized systems have a large gap (about 1eV), the most stable structures are the chain-like distortions where the direction of the arranged trans-polyacetylene chains is along almost the tubular axis. The electronic structures are ofsemiconductors due to the large gap.Comment: submitted to Phys. Rev. B, pages 15, figures 1
    • …
    corecore