63 research outputs found

    Dysregulation of the transcription factors SOX4, CBFB and SMARCC1 correlates with outcome of colorectal cancer

    Get PDF
    The aim of this study was to identify deregulated transcription factors (TFs) in colorectal cancer (CRC) and to evaluate their relation with the recurrence of stage II CRC and overall survival. Microarray-based transcript profiles of 20 normal mucosas and 424 CRC samples were used to identify 51 TFs displaying differential transcript levels between normal mucosa and CRC. For a subset of these we provide in vitro evidence that deregulation of the Wnt signalling pathway can lead to the alterations observed in tissues. Furthermore, in two independent cohorts of microsatellite-stable stage II cancers we found that high SOX4 transcript levels correlated with recurrence (HR 2.7; 95% CI, 1.2–6.0; P=0.01). Analyses of ∼1000 stage I–III adenocarcinomas, by immunohistochemistry, revealed that patients with tumours displaying high levels of CBFB and SMARCC1 proteins had a significantly better overall survival rate (P=0.0001 and P=0.0275, respectively) than patients with low levels. Multivariate analyses revealed that a high CBFB protein level was an independent predictor of survival. In conclusion, several of the identified TFs seem to be involved in the progression of CRC

    The impact of time-skew on phase noise measurements using balanced coherent detection

    No full text
    We derive sufficient conditions on the path delay difference (time-skew) in balanced receivers such that its impact on phase noise is negligible. These conditions are confirmed in numerical simulations

    Efficient inclusion body processing using chemical extraction and high gradient magnetic fishing

    No full text
    In this study we introduce a radical new approach for the recovery of proteins expressed in the form of inclusion bodies, involving W chemical extraction from the host cells, (ii) adsorptive capture of the target protein onto small magnetic adsorbents, and (iii) subsequent rapid collection of the product-loaded supports with the aid of high gradient magnetic fields. The manufacture and testing of two types of micron-sized nonporous superparamagnetic metal chelator particles derivatized with iminodiacetic acid is described. In small-scale adsorption studies conducted with a hexahistidine tagged form of the L1 coat protein of human papillomavirus type 16 dissolved in 8 M urea-phosphate buffer, the best binding performance (Q(max) = 58 mg g(-1) and K-d similar to 0.08 muM) was exhibited by Cu2+-charged type II support materials. Equilibrium adsorption of Ll to these nonporous supports was achieved very rapidly ( 100 mM imidazole in the equilibration buffer. The influence of feedstock complexity on Ll adsorption to the Cu2+-charged type II magnetic chelators was studied using various dilutions of four crude chemical E. coli cell extracts containing denatured L I protein. Undiminished Ll adsorption to these adsorbents (relative to the 8 M urea-phosphate buffer case) was observed with the least complex of these feed materials, i.e., a partially clarified (12 g dry weight L-1) and spermine-treated chemical cell extract (feedstock B). Efficient recovery of Ll from feed B was demonstrated at a 60-fold increased scale using the high gradient magnetic fishing (HGMF) system to collect loaded Cu2+-chelator particles following batch adsorption of L1. Over 70% of the initial Ll present was recovered within the HGMF rig in a highly clarified form in two batch elution cycles with an overall purification factor of similar to10
    • …
    corecore