311 research outputs found

    Rapid hydration and weakening of anhydrite under stress: implications for natural hydration in the Earth's crust and mantle

    Get PDF
    Mineral hydration is an important geological process that influences the rheology and geochemistry of rocks and the fluid budget of the Earth's crust and mantle. Constant-stress differential compaction (CSDC) tests, dry and "wet"tests under confining pressure, and axial-stress tests were conducted for the first time to investigate the influence of triaxial stress on hydration in anhydrite-gypsum aggregates. Characterization of the samples before and after triaxial experiments was performed with optical and scanning electron microscopy, including energy-dispersive spectroscopy and electron backscatter diffraction mapping. Stress-strain data reveal that samples that underwent constant-stress differential compaction in the presence of fluids are g1/4g14g% to g1/4g41g% weaker than samples deformed under wet conditions. The microstructural analysis shows that there is a strong temporal and spatial connection between the geometry, distribution, and evolution of fractures and hydration products. The increasing reaction surface area in combination with pre-existing gypsum in a gypsum-bearing anhydrite rock led to rapid gypsification. The crystallographic orientations of newly formed vein gypsum have a systematic preferred orientation for long distances along veins, beyond the grain boundaries of wall-rock anhydrite. Gypsum crystallographic orientations in {100} and {010} are systematically and preferentially aligned parallel to the direction of maximum shear stress (45g to σ1). Gypsum is also not always topotactically linked to the wall-rock anhydrite in the immediate vicinity. This study proposes that the selective inheritance of crystal orientations from favourably oriented wall-rock anhydrite grains for the minimization of free energy for nucleation under stress leads to the systematic preferred orientation of large, new gypsum grains. A sequence is suggested for hydration under stress that requires the development of fractures accompanied by localized hydration. Hydration along fractures with a range of apertures up to 120gμm occurred in under 6gh. Once formed, gypsum-filled veins represent weak surfaces and are the locations of further shear fracturing, brecciation, and eventual brittle failure. These findings imply that non-hydrostatic stress has a significant influence on hydration rates and subsequent mechanical strength of rocks. This phenomenon is applicable across a wide range of geological environments in the Earth's crust and upper mantle

    Vortex Charging Effect in a Chiral px±ipyp_x\pm i p_y-Wave Superconductor

    Full text link
    Quasiparticle states around a single vortex in a px±ipyp_x\pm i p_y-wave superconductor are studied on the basis of the Bogoliubov-de Gennes (BdG) theory, where both charge and current screenings are taken into account. Due to the violation of time reversal symmetry, there are two types of vortices which are distinguished by their winding orientations relative to the angular momentum of the chiral Cooper pair. The BdG solution shows that the charges of the two types of vortices are quite different, reflecting the rotating Cooper pair of the px±ipyp_x\pm i p_y-wave paring state.Comment: 10 pages, 5 figures, revtex, to be published in Phys. Rev.

    Ferromagnetism in the two dimensional t-t' Hubbard model at the Van Hove density

    Full text link
    Using an improved version of the projection quantum Monte Carlo technique, we study the square-lattice Hubbard model with nearest-neighbor hopping t and next-nearest-neighbor hopping t', by simulation of lattices with up to 20 X 20 sites. For a given R=2t'/t, we consider that filling which leads to a singular density of states of the noninteracting problem. For repulsive interactions, we find an itinerant ferromagnet (antiferromagnet) for R=0.94 (R=0.2). This is consistent with the prediction of the T-matrix approximation, which sums the most singular set of diagrams.Comment: 10 pages, RevTeX 3.0 + a single postscript file with all figure

    Phase transition in the one-dimensional Kondo lattice model with attractive electron-electron interaction

    Full text link
    The one-dimensional Kondo lattice model with attractive interaction among the conduction electrons is analyzed in the case of half-filling. It is shown that there are three distinct phases depending on the coupling constants of the model. Two phases have a spin and charge gap. While one shows a clear separation of the spin and charge excitation spectrum the other phase may be characterized as a band insulator type where both excitations are due to two-particle states. The third phase is gapless in both channels and has quasi long-range order in the spin and charge density wave correlation. In this phase the spin and charge excitations have again a clearly separated spectrum. For the analysis we discuss first two limiting cases. Then a density matrix renormalization group calculation on finite systems is applied to determine the phase diagram and the correlation functions in the gapped and gapless phase for general couplding constants.Comment: 9 pages, 7 Postscript figures, REVTe

    Composite Fermions and the Energy Gap in the Fractional Quantum Hall Effect

    Full text link
    The energy gaps for the fractional quantum Hall effect at filling fractions 1/3, 1/5, and 1/7 have been calculated by variational Monte Carlo using Jain's composite fermion wave functions before and after projection onto the lowest Landau level. Before projection there is a contribution to the energy gaps from the first excited Landau level. After projection this contribution vanishes, the quasielectron charge becomes more localized, and the Coulomb energy contribution increases. The projected gaps agree well with previous calculations, lending support to the composite fermion theory.Comment: 12 pages, Revtex 3.0, 2 compressed and uuencoded postscript figures appended, NHMFL-94-062

    Benefits of ecological engineering practices

    Get PDF
    With the intention to further promote the field of ecological engineering and the solutions it provides, a workshop on “Benefits of Ecological Engineering Practices” was held 3 December 2009. It was conducted by the International Ecological Engineering Society in Paris at the conference “Ecological Engineering: from Concepts to Application” organized by the Ecological Engineering Applications Group GAIE. This paper presents the results of the workshop related to three key questions: (1) what are the benefits of ecological engineering practices to human and ecosystem well-being, (2) which concepts are used or useful to identify, reference, and measure the benefits of ecological engineering practices, and (3) how and to whom shall benefits of ecological engineering practices be promoted. While benefits of ecological engineering practices are diverse, general conclusions can be derived to facilitate communication. Identifying benefits requires valuation frameworks reaching beyond the scope of ecology and engineering. A distinction between human and ecosystem well-being in this regard may not be easy or useful, but instead humans embedded in ecosystems should be addressed as a whole. The concepts of resource efficiency, ecosystem services, ecosystem health, and multifunctional land use could serve as suitable references to frame ecological engineering benefits, as well as referring to international political goals such as biodiversity protection, climate change mitigation and poverty reduction. Sector and application specific criteria of good practice could be worked out. Regional, area specific reference systems for sustainable development could provide comparative advantages for ecologically engineered solutions. Besides people with high decision making power and people with high motivation for change are good target groups to be addressed

    Numerical Study of Impurity Effects on Quasiparticles within S-wave and Chiral P-wave Vortices

    Full text link
    The impurity problems within vortex cores of two-dimensional s-wave and chiral p-wave superconductors are studied numerically in the framework of the quasiclassical theory of superconductivity and self-consistent Born approximation under a trial form of the pair potential. The dispersion and impurity scattering rate (the inverse of the relaxation time) of the Andreev bound state localized in vortex cores are deduced from the angular-resoloved local density of states. The energy dependence of the impurity scattering rates depends on the pairing symmetry; particularly, in the chiral p-wave vortex core where chirality and vorticity have opposite sign and hence the total angular momentum is zero, the impurities are ineffective and the scattering rate is vanishingly small. Owing to the cancellation of angular momentum between chirality and vorticity, the chiral p-wave vortex core is similar to locally realized s-wave region and therefore non-magnetic impurity is harmless as a consequence of Anderson's theorem. The results of the present study confirm the previous results of analytical study (J. Phys. Soc. Jpn. {\bf 69} (2000) 3378) in the Born limit.Comment: 8pages, 9figures, submitted to J. Phys. Soc. Jp

    Fingerprinting of chlorinated paraffins and their transformation products in plastic consumer products

    Full text link
    Chlorinated paraffins (CPs) can be classified according to their length as short-chain (SC, C10-C13), medium-chain (MC, C14-C17) and long-chain (LC, C ≥ 18) CPs. Technical CP-mixtures can contain a wide range of carbon- (C-, nC = 10-30) and chlorine- (Cl-, nCl = 3-19) homologues. CPs are high-production volume chemicals (>106 t/y). They are used as flame-retardants, plasticizers and coolant fluids. Due to the persistence, bioaccumulation, long-range environmental transport potential and adverse effects, SCCPs are regulated as persistent organic pollutants (POPs) by the Stockholm Convention. Transformation of CPs can lead to the formation of unsaturated compounds such as chlorinated mono- (CO), di- (CdiO) and tri-olefins (CtriO). Such transformation reactions can occur at different stages of CP manipulation providing characteristic C-/Cl-homologue distributions. All this results in unique patterns that collectively create a fingerprint, which can be distinguished from CP-containing samples. Therefore, CP-fingerprinting can develop into a promising tool for future source apportionment studies and with it, the reduction of environmental burden of CPs and hazards to humans. Herein, CP-containing plastics were studied to establish fingerprints and develop this method. We analyzed four household items by reverse-phase liquid-chromatography coupled with a mass spectrometer with an atmospheric pressure chemical ionization source and an Orbitrap mass analyzer (RP-LC-APCI-Orbitrap-MS) operated at a resolution of 120000 (FWHM at m/z 200). MS-data of different CP-, CO-, CdiO- and CtriO-homologues were efficiently processed with an R-based automatic mass spectra evaluation routine (RASER). From the 16720 ions searched for, up to 4300 ions per sample were assigned to 340 C-/Cl-homologues of CPs and their transformation products. Specific fingerprints were deduced from the C-/Cl-homologues distributions, the carbon- (nC) and chlorine- (nCl) numbers and saturation degree. These fingerprints were compared with the ones obtained by a GC-ECNI-Orbitrap-MS method

    Strong Pinning and Plastic Deformations of the Vortex Lattice

    Full text link
    We investigate numerically the dynamically generated plastic deformations of a 3D vortex lattice (VL) driven through a disorder potential with isolated, strong pinning centers (point-like or extended along the field direction). We find that the VL exhibits a very peculiar dynamical behavior in the plastic flow regime, in particular, topological excitations consisting of three or four entangled vortices are formed. We determine the critical current density jcj_c and the activation energy for depinning UcU_c in the presence of a finite density of strong pinning centers.Comment: 12 pages, TeX type, Postscript figure

    Vortex structure in chiral p-wave superconductors

    Full text link
    We investigate the vortex structure in chiral p-wave superconductors by the Bogoliubov-de Gennes theory on a tight-binding model. We calculate the spatial structure of the pair potential and electronic state around a vortex, including the anisotropy of the Fermi surface and superconducting gap structure. The differences of the vortex structure between sinpx+isinpy\sin p_x + {\rm i} \sin p_y-wave and sinpxisinpy \sin p_x - {\rm i} \sin p_y-wave superconductors are clarified in the vortex lattice state. We also discuss the winding 3\mp 3 case of the sin(px+py)±isin(px+py)\sin{(p_x+p_y)} \pm {\rm i} \sin{(-p_x+p_y)}-wave superconductivity.Comment: 10 pages, 8 figure
    corecore