372 research outputs found
Efficient High-dimensional Quantum Key Distribution with Hybrid Encoding
We propose a schematic setup of quantum key distribution (QKD) with an
improved secret key rate based on high-dimensional quantum states. Two
degrees-of-freedom of a single photon, orbital angular momentum modes, and
multi-path modes, are used to encode secret key information. Its practical
implementation consists of optical elements that are within the reach of
current technologies such as a multiport interferometer. We show that the
proposed feasible protocol has improved the secret key rate with much
sophistication compared to the previous 2-dimensional protocol known as the
detector-device-independent QKD.Comment: 10 pages, 6 figure
Estimating Live Fuel Moisture Using SMAP L-Band Radiometer Soil Moisture for Southern California, USA
Live fuel moisture (LFM) is a field-measured indicator of vegetation water content and a crucial observation of vegetation flammability. This study presents a new multi-variant regression model to estimate LFM in the Mediterranean ecosystem of Southern California, USA, using the Soil Moisture Active Passive (SMAP) L-band radiometer soil moisture (SMAP SM) from April 2015 to December 2018 over 12 chamise (Adenostoma fasciculatum) LFM sites. The two-month lag between SMAP SM and LFM was utilized either as steps to synchronize the SMAP SM to the LFM series or as the leading time window to calculate the accumulative SMAP SM. Cumulative growing degree days (CGDDs) were also employed to address the impact from heat. Models were constructed separately for the green-up and brown-down periods. An inverse exponential weight function was applied in the calculation of accumulative SMAP SM to address the different contribution to the LFM between the earlier and present SMAP SM. The model using the weighted accumulative SMAP SM and CGDDs yielded the best results and outperformed the reference model using the Moderate Resolution Imaging Spectroradiometer (MODIS) Visible Atmospherically Resistance Index. Our study provides a new way to empirically estimate the LFM in chaparral areas and extends the application of SMAP SM in the study of wildfire risk
Patterns of Population Displacement During Mega-Fires in California detected using Facebook Disaster Maps
The Facebook Disaster Maps (FBDM) work presented here is the first time this platform has been used to provide analysis-ready population change products derived from crowdsourced data targeting disaster relief practices. We evaluate the representativeness of FBDM data using the Mann-Kendall test and emerging hot and cold spots in an anomaly analysis to reveal the trend, magnitude, and agglommeration of population displacement during the Mendocino Complex and Woolsey fires in California, USA. Our results show that the distribution of FBDM pre-crisis users fits well with the total population from different sources. Due to usage habits, the elder population is underrepresented in FBDM data. During the two mega-fires in California, FBDM data effectively captured the temporal change of population arising from the placing and lifting of evacuation orders. Coupled with monotonic trends, the fall and rise of cold and hot spots of population revealed the areas with the greatest population drop and potential places to house the displaced residents. A comparison between the Mendocino Complex and Woolsey fires indicates that a densely populated region can be evacuated faster than a scarcely populated one, possibly due to better access to transportation. In sparsely populated fire-prone areas, resources should be prioritized to move people to shelters as the displaced residents do not have many alternative options, while their counterparts in densely populated areas can utilize their social connections to seek temporary stay at nearby locations during an evacuation. Integrated with an assessment on underrepresented communities, FBDM data and the derivatives can provide much needed information of near real-time population displacement for crisis response and disaster relief. As applications and data generation mature, FBDM will harness crowdsourced data and aid first responder decision-making
Estimating Live Fuel Moisture in Southern California Using Remote Sensing Vegetation Water Content Proxies
Wildfires are a major ecological disturbance in Southern California and often lead to great destruction along the Wildland-Urban Interface. Live fuel moisture has been used as an important indicator of wildfire risk in measurements of vegetation water content. However, the limited field measurements of live fuel moisture in both time and space have affected the accuracy of wildfire risk estimations. Traditional estimation of live fuel moisture using remote sensing data was based on vegetation indices, indirect proxies of vegetation water content and subject to influence from weather conditions. In this study, we investigated the feasibility of estimating live fuel moisture using vegetation indices, Soil Moisture Active Passive L-band soil moisture data and the modeled vegetation water content using a non-linear model based on VIs and the stem factor associated with remote sensing moisture data products. The stem factor describes the peak amount of water residing in stems of plants and varies by land cover. We also compared the outcomes from regression models and recurrent neural network using the same independent variables. We found the modeled vegetation water content outperformed vegetation indices and the L-band soil moisture observations, suggesting a non-linear relationship between live fuel moisture and the remotely sensed vegetation signatures. We discuss our results which will improve the predictability of live fuel moisture
Investigating the Lagged Relationship between Smap Soil Moisture and Live Fuel Moisture in California, USA
Live fuel moisture (LFM), defined as the ratio between water in the fresh biomass out of the dry biomass, is a vital measurement of vegetation water content and flammability. In this study, we investigated the dynamics of in-situ measurement of LFM at all the active sites in California, USA and revealed the difference between evergreen forest and shrub/scrub, the two dominant land cover types in California\u27s fire-prone regions. We found that LFM of evergreen forest responses to soil moisture increase later than shrub/scrub, due to a later occurrence of major precipitation, a lower air temperature, and the different plant physiology. The comparison between SMAP L-band radiometer soil moisture and LFM showed that the lag between the rise in soil moisture and the response from LFM was much longer in evergreen forest. Compared with the evergreen forest, LFM of shrub/scrub was more sensitive to the inter-annual variability of soil moisture due to plant physiology and air temperature
Impact of Controlling Nutritional Status score on short-term outcomes after carotid endarterectomy: a retrospective cohort study
Background Malnutrition and impaired immune responses significantly affect the clinical outcomes of patients with atherosclerotic stenosis. The Controlling Nutritional Status (CONUT) score has recently been utilized to evaluate perioperative immunonutritional status. This study aimed to evaluate the relationship between immunonutritional status, indexed by CONUT score, and postoperative complications in patients undergoing carotid endarterectomy (CEA). Methods We retrospectively evaluated 188 patients who underwent elective CEA between January 2010 and December 2019. The preoperative CONUT score was calculated as the sum of the serum albumin concentration, total cholesterol level, and total lymphocyte count. The primary outcome was postoperative complications within 30 days after CEA, including major adverse cardiovascular events, pulmonary complications, stroke, renal failure, sepsis, wounds, and gastrointestinal complications. Cox proportional hazards regression analysis was used to estimate the factors associated with postoperative complications during the 30-day follow-up period. Results Twenty-five patients (13.3%) had at least one major complication. The incidence of postoperative complications was identified more frequently in the high CONUT group (12 of 27, 44.4% vs. 13 of 161, 8.1%; p<0.001). Multivariate analyses showed that a high preoperative CONUT score was independently associated with 30-day postoperative complications (hazard ratio, 5.98; 95% confidence interval, 2.56–13.97; p<0.001). Conclusion Our results showed that the CONUT score, a simple and readily available parameter using only objective laboratory values, is independently associated with early postoperative complications
- …