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Abstract: Live fuel moisture (LFM) is a field-measured indicator of vegetation water content and a
crucial observation of vegetation flammability. This study presents a new multi-variant regression
model to estimate LFM in the Mediterranean ecosystem of Southern California, USA, using the Soil
Moisture Active Passive (SMAP) L-band radiometer soil moisture (SMAP SM) from April 2015 to
December 2018 over 12 chamise (Adenostoma fasciculatum) LFM sites. The two-month lag between
SMAP SM and LFM was utilized either as steps to synchronize the SMAP SM to the LFM series or as
the leading time window to calculate the accumulative SMAP SM. Cumulative growing degree days
(CGDDs) were also employed to address the impact from heat. Models were constructed separately
for the green-up and brown-down periods. An inverse exponential weight function was applied in
the calculation of accumulative SMAP SM to address the different contribution to the LFM between
the earlier and present SMAP SM. The model using the weighted accumulative SMAP SM and
CGDDs yielded the best results and outperformed the reference model using the Moderate Resolution
Imaging Spectroradiometer (MODIS) Visible Atmospherically Resistance Index. Our study provides
a new way to empirically estimate the LFM in chaparral areas and extends the application of SMAP
SM in the study of wildfire risk.

Keywords: Live fuel moisture; SMAP soil moisture; MODIS; wildfire; multi-variate regression
model; chaparral

1. Introduction

During the past decade, the increase of human activities in the wildland–urban interface (WUI)
has raised the chance of wildfire in Southern California, USA, and elsewhere due to accelerated
urbanization [1]. Combined with a recent extreme precipitation pattern under warmer climates,
mega-fires have become more frequent [2]. Live fuel moisture (LFM) is a ratio of the amount of water
contained in the fresh biomass to the weight of dry biomass [3]. The regular field observation of LFM
in the U.S. started in 1981. Local fire departments collect plant samples and input the measurements of
LFM into a national system maintained by the United States Forest Service (USFS) [4]. LFM is used as
a key input to the USFS National Fire Danger Rating System (NFDRS) [5].

LFM has received great attention in the study of fire risk for Mediterranean climates, including the
European Mediterranean area [6–8], Australia [9,10], and particularly, Southern California [11–13].
A primary focus of the previous studies is estimating LFM using remotely sensed indicators of vegetation
health and other variables addressing the biophysical processes. Two major directions are (1) building
empirical methods using reflectance or vegetation indices (VIs); and (2) process-based methods
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with radiative transfer models (RTMs) [14]. Compared with RTMs, which require complicated
parameterization to build look-up tables essential for the model’s construction and inversion,
empirical models are easier to conduct and have more flexibility to employ different metrics for
LFM estimation. VI-based empirical models for LFM are backed by the different spectral response
of plants at different moisture levels in visible, near infrared (NIR), and shortwave infrared (SWIR)
bands [15]. Compared with mature and healthy ones, stressed, premature, or withering plants
have a lower reflectance in SWIR bands, due to changes in leaf absorption [16]. These plants may
also show a different reflectance in visible bands because of the change in leaf pigment and plant
structure [15]. VIs used in the previous studies included common indices such as the Normalized
Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Normalized Difference Water
Index (NDWI), Normalized Difference Infrared Index (NDII, using infrared bands only), Soil-Adjusted
Vegetation Index (SAVI) and Visible Atmospherically Resistance Index (VARI, using visible bands
only) [14,17,18]. Although VIs were tested in many different regions, the best-performing one was
not consistent across different places and study time periods [14,15,17]. Site-specificity limited the
application of VI-based empirical models for regional or global scales.

Since April 1, 2015, NASA Soil Moisture Active Passive (SMAP), a mission using L-band
radar/radiometer to measure and map Earth’s soil moisture and freeze/thaw state, started to generate
soil moisture (SM) products at the 36-km grid level based on the brightness temperature obtained from
L-band radiometers [19]. A Backus–Gilbert interpolation method was applied to produce a higher
resolution SM product with a 9-km gridding size. Similar to its European counterpart, Soil Moisture
Ocean Salinity (SMOS) [20], SMAP data are less affected by atmospheric conditions than data from
optical sensors. L-band SM has been applied to flood damage detection [21], drought monitoring [22,23],
and carbon and water circulation modeling [24,25]. As a more direct metric to measure the amount of
moisture available to initiate and sustain the growth of vegetation, L-band SM can be used to estimate
the accumulation of biomass and the level of aridity, which are the key factors when determining the
risk of fire [26]. Its derivative, the L-band Vegetation Optical Depth (VOD), is sensitive to changes in
vegetation water content as plants respond to water stress or the change in biomass [27,28]. Therefore,
the L-band SM and its derivatives have the potential to assess the risk of wild fire by estimating the
amount of burnable biomass (fuel) and its degree of flammability [29,30].

Soil moisture contributes to the vegetation growing cycle differently between the green-up and
the brown-down period in fire-prone shrub land. In the green-up period, SM determines the amount
of biomass produced when photosynthesis is active by defining the amount of water that can be used
to sustain the growth of plants. After plants pass the peak period of growth and the vegetation hydric
condition starts to decline, SM reflects the aridity in the soil, which is linked to the flammability of
plants (fuel for wildfires). Previous studies did not distinguish these two different phenological stages.
In the Mediterranean ecosystem of Southern California, the increase of topsoil SM usually occurs
simultaneously with the start of the rainy season in the winter, weeks before plants begin to grow [31].
As the rainy season proceeds, a major peak in precipitation forms around late January and early
February, providing moisture supply to the major peak of vegetation growth after a few weeks. The lag
between the change of SM and the vegetation growth is the foundation for constructing empirical
models for LFM using SMAP SM. In this study, we aimed to investigate this new way to estimate LFM
by constructing empirical models based on the SMAP SM and other vegetation-related meteorological
variables in fire-prone Southern California, USA. We also differentiated the green-up and brown-down
periods in the modeling to account for the different roles SM and other environmental conditions
played before and after the peak of vegetation growth. This work is one of the first applications of
SMAP SM data in a fire risk study.

We first compared the LFM observations with the SMAP SM to investigate the relationship
between these two metrics. We tested two data analysis strategies to address the time difference
between SMAP SM and LFM by (1) synchronizing the SMAP SM series to LFM; and (2) calculating the
accumulative SMAP SM within the leading time window to LFM. Cumulative growing degree days
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(CGDDs) were introduced in the multi-variant models as the second independent variable to account
for the contribution of heat to vegetation hydric status. We also treated the green-up and brown-down
periods of the growing season separately to address the different roles that SM and CGDDs played in
these two phases. To evaluate model performance, models applied in the study were compared with
the outcome from a regression model built with VARI calculated using MODIS reflectance product,
the most commonly used VI for LFM estimation in recent studies.

2. Materials and Methods

2.1. LFM Observations in Southern California

At every active site, LFM is measured by local fire departments on a biweekly basis and reported
to the National Fuel Moisture Database [4] maintained by U.S. Forest Service. Yet a longer interval
between measurements is normal due to the limited resources and other disruption. In practice,
fresh plant samples are picked up in the field and weighted in the laboratory, then oven-dried for
about 20 h to become dry biomass [4]. The mass of fresh and dry samples is then used to calculate the
LFM following:

LFM =
m f −md

md
× 100%, (1)

where m f is the mass of fresh sample and md is the mass of dry sample. USFS defines the level of fire
danger by LFM with the following guidelines: (1) LFM > 120% as low fire danger; (2) 80% ≤ LFM ≤ 120%
as moderate fire danger; (3) 60% ≤ LFM < 80% as high fire danger; (4) LFM < 60% as extremely high
fire danger [32].

In this study, we examined the LFM of chamise (Adenostoma fasciculatum), the most
characteristic and widely distributed chaparral across Southern California (SoCal, 32.175◦–34.43◦

N, 117.16◦–119.7◦ W) [31,33]. Southern California has a Mediterranean climate, with a major rainy
season during winter and early spring as well as a dry season that lasts from late summer to fall.
Following the rainy season from early January to early March, chamise in Southern California greens
up from late January to mid-April, which is reflected as an increase in LFM with moderate and low fire
risk from 100% to 160% (Figure 1). Since late April, chamise browns down and reaches the minimum
LFM level with an extremely high fire risk (around or below 60%) in late August to early September [34].
When the hot and dry Santa Ana winds occur in late summer and fall, the low LFM of plants makes
them more flammable [35,36] leading to the major fire season in Southern California. Depending on
the meteorological conditions, the fire season can last until the beginning of December, before the next
major rainy season occurs to initiate the new growing cycle of chamise (Figure 1).
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Figure 1. Multi-year average live fuel moisture (LFM) and its dynamics of 2017 (blue) and 2018 (red)
in Los Angeles Basin, Southern California (source: County of Los Angeles Fire Prevention Program).
The calendar year was divided into green-up (green background) and brown-down (orange background)
sections by the direction of the LFM trend across the multi-year average.
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To obtain a better temporal coverage and reduce the bias arising from uneven observation across
seasons, we selected 12 sites in Southern California (Figure 2) and collected their LFM observations
from the National Fuel Moisture Database [37] from April 1, 2015 to December 31, 2018. These sites
have the highest number of measurements as well as an even distribution of measurement across
seasons. Each season had an average of 10 measurements over three months, translating to about
one measurement in 10 days or less. Sites used in the analysis spanned across two different types of
soil. Chamise in the six sites located near the Pacific Ocean are rooted in luvisols, with loam as the
dominant topsoil and clay loam as the dominant subsoil. The other sites located in the mountainous
area have regosols, with loam as the dominant topsoil and subsoil. Compared to the coastal sites with
luvisols, mountainous sites with regosols have a coarser texture, which retains less soil moisture than
soil with a finer texture. Regosols contain 17% gravel and 35% silt in the topsoil, much higher than the
9% (gravel) and 27% (silt) in luvisols (Table S1) [38].
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Figure 2. Active live fuel moisture (LFM) observation sites and chamise landscape in Southern
California. Blue and green dots in the map are sites used in the study, representing coastal and
mountainous sites. Grey dots in the map are other sites with data available. Photo shows the landscape
of the chamise at the Laurel Canyon site, maintained by Los Angeles County Fire Department.

2.2. Remote Sensing Data

SMAP L-band radiometer SM was the major remote sensing data used in this study. Starting from
April 1, 2015, SMAP has accumulated four years of soil moisture data at a grid size of 9 and 36 km.
Brightness temperature measured from SMAP L-band radiometers is converted to soil moisture that
emanates from the top 5-cm of soil in a 36-km grid. A Backus–Gilbert interpolation method is applied
to downscale the product to a finer gridding at a size of 9 km. Soil moisture products are posted to the
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EASE-Grid 2.0 in a global cylindrical projection and stored using HDF5 format [39]. For the same type
of overpass (ascending at 6 PM or descending at 6 AM), the revisit schedule is three days [19].

In this study, we used a SMAP L3 enhanced radiometer SM at 9 km (SPL3SMP_E) for
LFM estimation [40]. This product is a daily composite of SMAP L2 enhanced radiometer SM,
which incorporated improvements such as a recalibration of brightness temperature, an improved
water body correction, and a revised method for computing the effective temperature for soil moisture
retrieval [41]. Compared with the older version, this product also excluded part of the coastal pixels
prone to significant sea–land contamination. Soil moisture retrieval from AM passes was used in the
study, as it is more reliable than using the PM passes [41]. The L2 enhanced radiometer SM showed a
close agreement with in situ measurements of SM and provided a satisfactory unbiased RMSE [41].
Inter-comparison also showed that SMAP L-band SM yielded a closer agreement with the in situ SM
measurement than other modeled or retrieved SM [42]. SMAP L3 L-band SM also showed a good
match with the in situ SM measurements in an inter-comparison with modeled SM [43]. We excluded
the soil moisture retrieval without a recommended quality following the quality flag. Soil moisture of
the grid where the LFM site is located was extracted from the gridded data and then paired with the
LFM observations at the site. If more than one site fell into the pixel of the SMAP 9-km grid, the soil
moisture value of this pixel was paired with the average LFM across all sites within the 9-km pixel.
There was only one pixel containing more than one LFM site in this study (Figure 2).

We also constructed a reference model using VARI, the most widely used VI with a satisfactory
performance in the recent studies of LFM estimation. MODIS MCD43A4 Collection 6 (500-m grid)
was employed as the reflectance to derive VARI. As a daily product generated combining the MODIS
terra and aqua reflectance, MCD43A4 can be used to derive VARI on a daily basis. Thus, all LFM
observations can be paired with a VARI calculation to maximize the use of LFM data. In this study,
we calculated VARI with the reflectance from visible bands following

VARI =
ρGreen − ρRed

ρGreen + ρRed − ρBlue
, (2)

where ρRed, ρGreen, and ρBlue indicate the reflectance of these bands, respectively. VARI was calculated
for all the MODIS pixels located inside the SMAP 9-km pixels that contain the LFM sites. An average of
VARI inside each 9-km pixel was calculated for the model construction. VARI emphasizes vegetation
in the visible portion of the spectrum and reflects the change in leaf pigment to indicate the vegetation
health. It is by far the vegetation index most used to estimate LFM using an empirical model and has
been applied to evaluate the outcome from RTMs [9,10]. All regression models built using SMAP soil
moisture and other ancillary variables in this study were compared with a regression model using only
VARI to assess the model performance.

Although previous studies suggested that L-band VOD shows a good correlation with the
vegetation water content (VWC) [27,28], we did not find a significant relationship between the L-band
VOD derived by Konings [27] using the SMAP L-band radiometer SM product (Figures S1 and S2).
We also tested the vegetation opacity (VO) field stored in the SPL3SMP_E product, which is calculated
using the τ-ω model based on VWC. The VWC is derived by a non-linear model based on MODIS
NDVI and a stem factor differing between land cover types [43]. Although the smoothed VO showed
a fair response with LFM (Figure S3), modeling using SMAP VO is not too different from using
a VI. In this study, we have already employed VARI to construct a VI-based model for the model
comparison. Therefore, we did not construct a model using either the L-band VOD by Konings [27] or
the SPL3SMP_E VO field.

2.3. Meteorological Variable Preparation

Meteorological data representing the moisture and heat conditions during the growing cycle were
also used in the study. Instead of directly using the air temperature, we employed growing degree
days (GDDs) as the indicator of heat, as it better represents the accumulative heat necessary to initiate
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key events during vegetation growth than daily average temperature. GDD is the integral of warmth
above a base temperature [44]. It can be calculated using the following equation:

GDD =
Tmax + Tmin

2
− Tbase, (3)

where Tmax is the max temperature of the day, Tmin is the min temperature of the day, Tbase is the base
temperature used in GDD calculation. Here, we used an empirical value of Tbase at 12 ◦C, as some
increment of growth would be evident during the 24-h period when the temperature is above this
level [45]. In this study, we calculated the cumulative GDD (CGDD) as the running total from the start
of growing season to the day of LFM observation. There is a specific number of GDDs that must be
accumulated to trigger a change in phenological status such as budburst in plants. CGDD can assess
how soon that transition is likely to be reached [46].

We employed the Parameter-elevation Relationships on Independent Slopes Model (PRISM)
climate dataset [47] to obtain the daily Tmax and Tmin needed for GDD calculation at every LFM
site. This climate dataset is developed based on the field observations with climatologically aided
interpolation. It is available at a resolution of 4 km on a daily basis across the U.S. starting from 1981 [48].
Compared with the observations from the remote automated weather stations (RAWS) associated to the
LFM sites, PRISM data do not have the missing value issue, thus provided a continuous calculation of
GDD and CGDD to be paired with LFM observations. In addition to Tmax and Tmin, daily precipitation
was also extracted at every LFM site during the study period. We calculated the average across the
4-km pixels contained in the SMAP 9-km pixel where the LFM sites are located to match the gridding
size between SMAP SM and PRISM. To evaluate the contribution from CGDD, we also reported the
adjusted R2 and RMSE from the linear fit model between LFM and CGDD as well as a model built
using VARI and CGDD.

2.4. Regression Model Development

2.4.1. Lag Extraction

The lagged relationship between SMAP SM and LFM needed to be addressed in the following
regression model. We compared the two series at every site to extract the time difference between
SMAP SM and LFM. In this step, VARI calculated using MODIS MD43A4 daily reflectance was used
as a proxy of LFM to obtain a smoother time series and mitigate the problem of missing values,
which harms the accuracy derivation of key timing points to describe the annual cycle of change.
As a reflectance of vegetation health condition and water content, VARI has little to no temporal
lags to the change of LFM and captures the dynamics of LFM well [11]. For SMAP SM and VARI at
every site, we derived the key timing of time series including the start, peak, and end of each water
year (2015–2016, 2016–2017, 2017–2018). TIMESAT, a MATLAB-based time series analysis package,
was used for this step [49]. The start and end of VARI was used to reset the calculation of CGDD at
the beginning of the next water year. The peak of VARI was used to divide the growing cycle into
green-up and brown-down periods. We treated each LFM site differently when calculating the lags
between the SMAP SM and LFM. For every water year in the study, we first calculated the difference
between the key timing of the SMAP SM and VARI to obtain the lag. Then, we derived the average lag
across the three water years as the lag used for data manipulation at each site.

2.4.2. Phenological Phase Definition

We used a new way to address the seasonality of plant growth in this study. Instead of using
calendar months to divide seasons in the modeling, we separated the growing cycle using the start, end,
and peak time derived using TIMESAT described in Section 2.4.1. The growing cycle of chamise was
divided into the green-up and the brown-down periods. Green-up periods start from the time when
the first consecutive increase in VARI was identified and end at the peak time of VARI. Brown-down
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periods start from the peak time of VARI and end when VARI reached the bottom as time proceeds.
In the growing cycle of chamise in Southern California, the green-up period is from winter (DJF) to
mid-spring (March to mid-April), while the brown-down period runs from mid-spring to summer (JJA),
and ends in fall (SON). Using phenological metrics can better account for site-wise and inter-annual
differences in the growing cycle than rigid calendar months.

2.4.3. Regression Models Using the Synchronized SMAP SM

We first calculated Kendall’s rank correlation between the LFM and the original SMAP SM.
Kendall’s rank correlation was employed as it assesses the strength of relationship between two variables
without making any assumptions about the frequency distribution of variables [50]. In addition,
Kendall’s rank correlation is less sensitive to the outliers in the data series [51]. We shifted the SMAP
SM time series at every LFM site to synchronize with the LFM, using lags between the SMAP SM and
LFM at each site obtained by TIMESAT. A new Kendall’s rank correlation was then calculated between
LFM and the synchronized SMAP SM for comparison. Later, we built a regression model to estimate
LFM using the synchronized SMAP SM and reported adjusted R2 and root mean square error (RMSE)
for model performance.

To address the impacts from heat during the growing cycle of chamise, we introduced CGDD
as the second independent variable in the regression model. The model was constructed separately
for the green-up and brown-down periods to address the different role that CGDD and SMAP SM
played before and after plants reached the peak. During the green-up periods, both CGDD and SMAP
SM positively contributes to the growth of plants as the determinants of the amount of moisture and
heat available to initiate and sustain the growth, which causes an increase of LFM. When plants reach
the peak of growth and the vegetation health starts to decline, CGDD has a negative correlation to
vegetation health. SMAP SM positively contributes to the LFM as an indicator of surface drought
condition, different from the role it played during the green-up period. Separating the two phenological
stages can address such difference between the phenological stages for a more physically meaningful
model of LFM.

2.4.4. Regression Models Using the Accumulative SMAP SM

Another way to account for the lag between SMAP SM and LFM was using the lag as the size of
a leading moving window to calculate the accumulative SMAP SM ahead of the LFM observation.
This strategy assumed that the LFM of plants was not determined by a single slice of SMAP SM in
the past. Instead, moisture accumulated over a certain period to initiate the growing process and
support the plant growth. Once the SM of topsoil increases right after the precipitation, it needs time
to be utilized by plants and reflected in the vegetation growth. Furthermore, such contribution also
changes over time. The SMAP SM on the day when the LFM measurement is taken may have little to
no impact on the LFM observed, as SMAP only measures the SM of topsoil (~5 cm), which needs time
to be assimilated by plants. In contrast, moisture stored in the topsoil a few weeks earlier has already
infiltrated into the root zone and been assimilated plants, thus plays a greater role than the present
moisture in the topsoil in determining the LFM.

In this study, we compared the two strategies to account for the accumulative effect of the SMAP
SM on vegetation growth to soil moisture increases. The first was simply adding up all the SMAP SM
available in the time window, while the second was applying a weight function to the SMAP SM in
the time window then adding them up to address the different contributions to the LFM between the
earlier and later SMAP SM measurements. The weight function followed the inversed exponential
format, with the weight decreasing from the earliest to the latest date. GDD was also added as
the second independent variable to address the contribution from heat. Similar as the model using
synchronized SMAP SM and CGDD, the green-up and brown-down periods were calculated separately
while building the models. We summarized the equation and physical indication of the four models
discussed in Sections 2.4.2 and 2.4.3 in Table 1.
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Table 1. Multi-variant regression models discussed in this study and the physical indication. Start of
season (SOS) is defined as the first day when a consecutive increase of Visible Atmospheric Resistance
Index (VARI) occurs.

Model Equation Explanation of Model

Synchronized SMAP SM LFMt = α1 × SMAP SMt−lag + ε
LFM at time t was determinated by SMAP

SM at time t-lag

Synchronized SMAP SM
+ Cumulative GDD LFMt = α1 × SMAP SMt−lag + α2 ×

t∑
SOS

GDD + ε
LFM at t was determinated by SMAP SM

at time t-lag and the cumulative GDD
from the start of water year to t

Accumulative SMAP SM
+ Cumulative GDD

LFMt = α1 ×
t∑

t−lag
SMAP SM + α2 ×

t∑
SOS

GDD + ε

LFM at t was determinated by
accumulated SMAP SM from t0-lag to t

and the cumulative GDD from the start of
water year to t

Weighted Accumulative
SMAP SM + Cumulative

GDD
LFMt = α1 ×W ×

t∑
t−lag

SMAP SM+ α2 ×
t∑

SOS
GDD+ ε

LFM at t was determinated by the
weighted accumulated SMAP SM from
t-lag to t and the cumulative GDD from
the start of water year to t; weight (W)

decreased from past to present in a
logarithm form.

VARI only (Reference) LFMt = α1 ×VARIt + ε LFM at t was determined by VARI at t

Cumulative GDD only LFMt = α1 ×
t∑

SOS
GDD + ε

LFM at t was determined by the
cumulative GDD at t

VARI + Cumulative GDD LFMt = α1 ×VARIt + α2 ×
t∑

SOS
GDD + ε

LFM at t was determined by VARI and
cumulative GDD at t

SMAP SM: SMAP soil moisture; GDD: Growing Degree Days.

3. Results

3.1. Relationship between Precipitation, SMAP SM, and LFM

We first compared the average daily precipitation, SMAP SM and LFM across the 12 LFM sites in
Southern California to get a better indication of the relationship between the atmospheric moisture
supply, moisture in the topsoil, and the growing cycle of chamise. Soil moisture in the topsoil
showed an immediate response to the precipitation, while a delay was observed in the response from
LFM (Figure 3). This time difference was prominent especially in water year 2016–2017, when the
precipitation was concentrated in January and February and formed a significant single peak in the
winter months. SMAP SM increased and peaked at the same time as the precipitation occurred,
then sharply decreased as the rainy season ended in early March. During the summer and fall months
(JJA, SON), the SMAP SM value stayed below 0.15 cm cm−1 without a significant upward or downward
incline. On the other hand, LFM reached its peak around April, at the time of maximum blooming,
which was several weeks after the peak of SMAP SM and precipitation. LFM started to decrease in
mid-April as the temperature continued to grow and reached its minimum in fall (mid-September).

However, there is a significant inter-annual variability between SMAP SM and LFM. Compared with
2016–2017 with a greater amount of precipitation and higher peak LFM of 145%, the total amount of
precipitation during the rainy season in water year 2015–2016 was below normal and led to a lower
LFM peak value of 130% (Figure 3). The time difference between the peak of SMAP SM and LFM
was also short in 2015–2016. The peak of the rainy season did not end until March 6, 2016, the last
day when the daily precipitation was above 10 mm. At the same time, the average LFM across the
12 sites was already 120%, indicating that plant growth was near the peak of the growing season.
The year 2016–2017 had the strongest rainy season among the three years of study. The accumulative
precipitation was 508.7 mm, higher than the 237.5 for 2015–2016 and 225.2 mm for 2017–2018, with a
peak of 67 mm on February 18, 2017. Due to a much greater moisture supply, LFM during the growing
season was higher than the previous year, with a peak of 144% on March 16, 2017. Compared with
the two previous years, the rainy season of 2017–2018 was separated into two sections and started
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later. The first day with more than 10 mm precipitation was January 1, 2018, much later other years
(November 21, 2016 for 2015–2016, November 26, 2016 for 2016–2017). After a dry February without
precipitation, a bigger peak of precipitation occurred in late March. The late occurrence of the rainy
season also led to a much later time of LFM around April 29, 2018. Though the rainy season was
separated into two smaller peaks, the year 2017–2018 had the highest peak LFM (165%) among the
three water years of analysis.Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 21 
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Figure 3. Averaged SMAP soil moisture (SM) from AM overpasses, chamise LFM observation,
and the Parameter-elevation Relationships on Independent Slopes Model (PRISM) daily precipitation
across 12 sites of Southern California used in the study. Orange lines are the averaged SMAP SM.
Green lines are the averaged LFM observations. Blue bars are the daily precipitation derived from
PRISM climate dataset.

The inter-annual variation of precipitation pattern resulted in a large range of the lag between
SMAP SM and LFM. In the histogram showing the lags between the SMAP SMs across different years
and sites (Figure 4), the majority of lags ranged between 40 and 70 days with an average of 53 days,
indicating about a two-month lag between the increase of SMAP SM and the change being reflected in
the LFM. Comparing the three water years of study, lags of 2016–2017 had the least outliers and were
concentrated around the average. Outliers include two results above 90 days and three below 30 days
(Figure 4). Results with the longest lags came from 2017–2018, a water year with two separate peaks in
the rainy season. The earlier peak in January did not immediately initiate the growing season for some
sites. The separate peaks in the rainy season of 2017–2018 also resulted in three results with less than
30 days of lags (Figure 4), as the second peak of precipitation occurred about less than a month before
LFM reached its peak at some sites.Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 21 
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3.2. LFM Estimation Using the Synchronized SMAP SM

We first evaluated the impact of the lag between the SMAP SM and LFM on the relationship
between the two variables by calculating the average. Kendall’s rank correlation between the SMAP
SM and LFM across all study sites showed that the two variables had a positive but low correlation,
with an average Kendall’s τ of 0.19 and a large variation from 0.01 to 0.42 (bottom box in Figure 5).
After shifting the SMAP SM time series forward with the length of lag at each site, the correlation was
significantly increased to an average of 0.4 (middle box in Figure 5). However, the correlation between
the LFM and SMAP SM regardless of the synchronizing of time series or not, was still significantly
lower than the LFM and MODIS VARI, which had an average τ of 0.6 (top box in Figure 5).
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As the synchronized SMAP SM had a better correlation with LFM, we developed a linear regression
model for LFM with the synchronized SMAP SM. The overall adjusted R2 value of this model was
0.358, much lower than 0.442 from the reference model using MODIS VARI (Table 2). The relatively
low adjusted R2 can be attributed to the poor performance in 2015–2016 and 2017–2018. In these
two years, the estimated LFM had a great discrepancy from the observation. The model significantly
overestimated the LFM during the dry seasons (JJA and SON) of both years by 30%, while the model
underestimated the LFM in the peak of 2017–2018 by 60% (Figure 6). Overall, the regression model
using the synchronized SMAP SM did not yield a satisfactory LFM estimation, especially for 2015–2016
and 2017–2018. This indicated the need for additional independent variables other than SMAP SM to
address other factors contributing to vegetation growth and health.
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Figure 6. Multi-site average of the observed LFM (black dots) and estimated LFM (yellow line) using
synchronized (sync.) SMAP as the single independent variable across three water years from 2015 to 2018.
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3.3. LFM Estimation with the Consideration of GDD

Many environmental factors are involved at each plant developmental stage other than SM. In this
study we employed temperature effects in the form of CGDD in the regression model to estimate LFM.
CGDD describes the heat accumulation necessary for plant development and the condition of drought.
During the green-up period when plants actively grow, CGDD associated with plant growth positively.
When the brown-down period starts, CGDD continues to grow and contributes to vegetation health
negatively as an indicator of moisture loss due to evaporation.

We separated the brown-down and green-up periods by the peak day of LFM in the modeling to
address the difference between the two different phenological stages. The model with CGDD employed
showed a higher overall adjusted R2 and a lower RMSE than models using the synchronized SMAP SM
(Table 2). However, such an improvement was much more prominent in the model for the brown-down
period. The adjusted R2 was 0.51 for the model using synchronized SMAP SM and CGDD (Figure 7a),
significantly higher than the reference model using MODIS VARI (adjusted R2 = 0.38). Compared with
the reference model, results from the new model during the brown-down period also contained less
outliers. The adjusted R2 of the CGDD only model to estimate LFM was also significantly higher in the
brown-down period (Table 2), indicating that the CGDD mostly contributed to the estimation of the
LFM when plants experience withering. However, the underestimation of high LFM in the spring was
still persistent, especially when plants just passed the peak and still stayed above 150% (red box in
Figure 7a).

Table 2. Overall, seasonal, and by section model performance of all models discussed. Model with the
highest adjusted R2 using SMAP SM is highlighted in bold text. All models are statistically significant
(p-value < 0.001).

Model
Adjusted R2 Overall

RMSE
(%)Overall Brown

down
Green

up Winter Spring Summer Fall

Synchronized
SMAP SM 0.358 N/A N/A 0.187 0.055 0.211 0.018 23.202

Synchronized
SMAP SM +

Cumulative GDD
0.484 0.51 0.25 0.173 0.096 0.257 0.003 20.805

Accu. SMAP SM +
Cumulative GDD 0.510 0.56 0.43 0.244 0.11 0.258 0.005 20.284

Weighted Accu.
SMAP SM +

Cumulative GDD
0.529 0.58 0.47 0.290 0.179 0.226 0.005 19.876

VARI only
(reference model) 0.442 0.39 0.52 0.371 0.181 0.094 0.004 21.628

Cumulative GDD
only 0.339 0.53 0.15 0.017 0.012 0.138 0.010 23.546

VARI +
Cumulative GDD
(reference model)

0.56 0.57 0.526 0.368 0.196 0.152 0.006 21.467

On the other hand, the new model was outperformed by the VARI-only model in the green-up
period due to the underestimation of high LFM values in winter and spring (Figure 7b). The introduction
of GDD did not improve the modelling outcome of wet seasons (winter and spring) when the growth
of vegetation was active. LFMs above 100% were significantly underestimated in the new model
(red box in Figure 7b) compared with the VARI-only model. The adjusted R2 was 0.173 for winter and
0.096 for spring, similar to the single variable model using the synchronized SMAP SM (Table 2).
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Figure 7. Observed LFM and estimated LFM using the synchronized SMAP SM and cumulative GDD
(a,b). The brown-down and green-up periods were modeled separately. Outcomes from the VARI-only
model were used for comparison (c,d). Data were colored by seasons, using blue for winter, green for
spring, pink for summer, and orange for fall.

3.4. LFM Estimation Using the Accumulated SMAP SM

The most prominent weakness in the two previous models was the significant underestimation
during the active growing periods and when LFM was high. To better address the supply of moisture
in the growing cycle of plants, we replaced the synchronized SMAP SM with an accumulative SMAP
SM calculated within a leading time window before the LFM observation.

The use of accumulative SMAP SM alleviated the underestimation of high LFM (>100%) in
winter and spring for the green-up period (red box in Figures 7b and 8a). Such improvements also
significantly increased the adjusted R2 from 0.27 to 0.43 (Table 2). The brown-down period had a
less prominent improvement, with an adjusted R2 from 0.5 to 0.56 (Table 2). These results showed
that the use of accumulative SMAP SM better described the impact of soil moisture on the growth
of plants. In addition, adopting the accumulative SMAP SM significantly increased the number of
LFM observations that could be used for model construction. A large number of the LFM observations
were not included in the models using synchronized SMAP SM due to the lack of a paired SMAP SM
measurement. Employing the accumulative SMAP SM provided more SMAP SM-related data to pair
with the LFM observations, which was crucial for the construction of multi-variant regression models
and the production of LFM estimation.

To include various contribution from SM over time, a weight function was applied when the
SMAP SM was accumulated. Results showed that adding a weight function in the calculation of
accumulative SMAP SM improved the green-up period and the overall adjusted R2 slightly from
0.51 to 0.53 (Table 2). Such improvements occurred only in the green-up period, whose adjusted R2

increased from 0.43 to 0.47 (Table 2 and Figure 8b). By far, the model using weighted accumulative
SMAP SM and CGDD yielded the highest overall adjusted R2 and the smallest RMSE among all the
models involving SMAP SM as well as the reference model using MODIS VARI (Table 2). Although this
model has a lower adjusted R2 than another reference model using MODIS VARI and CGDD (adjusted
R2 = 0.56), it still provided the LFM estimation with the lowest RMSE (19.876%) among all models
discussed (Table 2).



Remote Sens. 2019, 11, 1575 13 of 20

Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 21 

 

On the other hand, the new model was outperformed by the VARI-only model in the green-up 
period due to the underestimation of high LFM values in winter and spring (Figure 7b). The 
introduction of GDD did not improve the modelling outcome of wet seasons (winter and spring) 
when the growth of vegetation was active. LFMs above 100% were significantly underestimated in 
the new model (red box in Figure 7b) compared with the VARI-only model. The adjusted R2 was 
0.173 for winter and 0.096 for spring, similar to the single variable model using the synchronized 
SMAP SM (Table 2).  

3.4. LFM Estimation Using the Accumulated SMAP SM 

The most prominent weakness in the two previous models was the significant underestimation 
during the active growing periods and when LFM was high. To better address the supply of moisture 
in the growing cycle of plants, we replaced the synchronized SMAP SM with an accumulative SMAP 
SM calculated within a leading time window before the LFM observation. 

The use of accumulative SMAP SM alleviated the underestimation of high LFM (>100%) in 
winter and spring for the green-up period (red box in Figure 7b and Figure 8a). Such improvements 
also significantly increased the adjusted R2 from 0.27 to 0.43 (Table 2). The brown-down period had 
a less prominent improvement, with an adjusted R2 from 0.5 to 0.56 (Table 2). These results showed 
that the use of accumulative SMAP SM better described the impact of soil moisture on the growth of 
plants. In addition, adopting the accumulative SMAP SM significantly increased the number of LFM 
observations that could be used for model construction. A large number of the LFM observations 
were not included in the models using synchronized SMAP SM due to the lack of a paired SMAP SM 
measurement. Employing the accumulative SMAP SM provided more SMAP SM-related data to pair 
with the LFM observations, which was crucial for the construction of multi-variant regression models 
and the production of LFM estimation. 

 
(a) Accumulative SMAP SM (b) Weighted Accumulative SMAP SM 

Figure 8. Observed LFM and estimated LFM using accumulative SMAP SM and CGDD (a) and 
weighted accumulative SMAP SM and CGDD (b). The brown-down and green-up periods were 
modeled separately. Outcomes from the VARI-only model were used for comparison. Coloring of 
data follows the same color code as Figure 7. 

To include various contribution from SM over time, a weight function was applied when the 
SMAP SM was accumulated. Results showed that adding a weight function in the calculation of 
accumulative SMAP SM improved the green-up period and the overall adjusted R2 slightly from 0.51 
to 0.53 (Table 2). Such improvements occurred only in the green-up period, whose adjusted R2 
increased from 0.43 to 0.47 (Table 2 and Figure 8b). By far, the model using weighted accumulative 
SMAP SM and CGDD yielded the highest overall adjusted R2 and the smallest RMSE among all the 
models involving SMAP SM as well as the reference model using MODIS VARI (Table 2). Although 

Figure 8. Observed LFM and estimated LFM using accumulative SMAP SM and CGDD (a) and
weighted accumulative SMAP SM and CGDD (b). The brown-down and green-up periods were
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3.5. Model Comparison and Validation

The outcome from the four models discussed above were compared with the observed LFM
for validation. The model using weighted accumulative SMAP SM and CGDD had the highest
adjusted R2 among all the models discussed in this study (bold text, Table 2), including the reference
model using MODIS VARI. Different model’s performance depended on the level of overestimation
or underestimation near the peak of the LFM. Models with CGDD employed as the second variable
performed better in the brown-down period as the overestimation was relieved. The discrepancy to the
observation around October of 2016 and 2018 was around 10% for the best performing model using the
weighted accumulative SMAP SM and CGDD (red line, Figure 9). The adjusted R2 of these models had
an average of 0.54 for the brown-down period, much higher than the VARI model (adjusted R2 = 0.37).
The factor that harmed the performance of all models discussed in this study was the prominent
underestimation of high LFM values, especially those that were obtained near the peak of LFM in
spring (Figures 7 and 8). Adopting the accumulative SMAP SM alleviated this issue. This improvement
increased the adjusted R2 from 0.25 to 0.43 and 0.47 for the non-weighted and weighted accumulative
SMAP SM respectively (Figure 8). However, models could not reproduce the high LFM observations
between 150% and 200%, including the reference model using MODIS VARI.

Model performance also differed across years. Among the three years of study, the year 2017–2018
had the greatest discrepancy in the estimation of peak values. The less concentrated precipitation
during winter of this year led to a slower climb in the LFM, which was well-captured by models.
Models could not reproduce the sharp increase near the peak of the LFM. Yet this discrepancy has
less of an impact on the use of the model for fire risk estimation, as the fire risk is at its minimum
around the peak of the LFM. Although the estimation of LFM was very close to the observation during
the climbing and declining times, models significantly underestimated the LFM near the peak and
overestimated near the minimum for the year 2016–2017 (Figure 9). The model using the weighted
accumulative SMAP SM and GDD was the one with the smallest discrepancy in the estimation of this
year. The year 2015–2016 had a noisier estimation than other years during the green-up period (from
December to mid-March), though this year had the smallest discrepancy near the peak.

Overall, the LFM estimation model represented the increasing and decreasing trends of the LFM
relatively well. The use of weighted accumulative SMAP SM and CGDD improved model performance
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in all years of the study. Under and over estimation near the extremes was a persistent problem of all
models, although introducing new independent variables slightly relieved such discrepancies.
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Figure 9. Multi-site average of the observed LFM (black dots) and estimated LFM using MODIS
VARI (green solid line), and synchronized (sync.) The SMAP SM (yellow solid line) and weighted
accumulated SMAP SM with CGDD (red solid line).

4. Discussion

4.1. SMAP SM for LFM Estimation and Outlook

Our results showed that the L-band soil moisture can serve as a new metric for LFM estimation,
if appropriately processed and combined with other metrics to address the interaction between weather
conditions and plant physiological processes. Compared with the vegetation indices obtained from
optical remote sensing products, SMAP SM from L-band radiometers are less prone to disturbances
from weather conditions, extending its application to some circumstances with unfavorable weather for
optical satellite observation. Furthermore, SMAP SM describes the available moisture in the soil that can
be utilized to initiate and sustain plant growth, which directly addresses plant physiological processes.

Although the model using weighted accumulative SM and CGDD outperformed the reference
model using MODIS VARI and yielded the smallest RMSE, it still had a lower adjusted R2 than another
reference model using MODIS VARI and CGDD (Table 2, Figure S3). However, VARI represents
the spectral response of plants at different hydric statuses or under different levels of water stress,
which is a result of changes in moisture and heat. Therefore, the impact from heat has been included
implicitly in the dynamics of VARI, leading to a strong collinearity between the independent variables.
In contrast, the accumulative SM and CGDD employed in our best LFM model are two independent
metrics addressing contributions from moisture and heat. Compared with the VARI + CGDD model,
it described the process of hydrological circulation between the soil and vegetation in a more physically
reasonable way.

The use of leading time lag between SMAP SM and LFM was crucial in LFM modeling using
SMAP SM. The present study also showed a better estimation of LFM than a similar study for
the Mediterranean region using the root zone SM and microwave indices like VOD at X-band and
Microwave Polarization Difference Index (MPDI) derived using measurements from ESA’s SMOS
program [7]. Part of the improvement in the present study arose from the adoption of accumulative
SMAP SM, whose calculation highly depended on the derivation of the lag time between SMAP SM
and LFM. Such a lag describes the time needed in the plant’s physiological process to absorb root zone
SM and assimilate the nutrients that support growth. Our study addressed this lag by employing
accumulative SMAP SM. It can also serve as an approach to calculate the outlook of LFM using remotely
sensed SM weeks before, which can be used in fire risk alarming.
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Unlike the study focusing on LFM in the Mediterranean region, we did not employ root zone
SM products derived using the surface SM (topsoil ~5 mm). The derived root zone soil moisture
(SPL4SMAU) changed simultaneously with the surface SM, which did not help to address the lag
relationship between surface SM and LFM (Figure 10). The major improvement in the present study
arose from the adoption of accumulative SMAP SM and the use of CGDD, as well as the partitioning
of LFM observation by the phenological cycle of plants.Remote Sens. 2019, 11, x FOR PEER REVIEW 16 of 21 
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Figure 10. SMAP level 3 soil moisture measurements of AM passes (black dots), SMAP level 4 surface
soil moisture derivation (blue solid line), and SMAP level 4 root zone soil moisture derivation (red
solid line).

Although we addressed part of the physical process in the terrestrial hydrological circulation
between precipitation, soil moisture, and vegetation water content to improve the model outcome,
this study still simplified a number of important processes in the circulation. Time needed by the plants
to assimilate the supply of soil moisture may be longer than the currently used length, which was
the lag between the SMAP SM and LFM. Factors other than the amount of topsoil moisture (SMAP
SM) and the integral heat (CGDD) may contribute to determine the time needed to assimilate the
precipitation residing in the topsoil to trigger and sustain vegetation growth. An inadequate length
of time that fully accounts for the preceding soil moisture contributing to the growth of plants may
explain the underestimation of the LFM around the peak time indicated in Figures 7–9. Future studies
should focus on addressing other factors that account for the physiological processes from the increase
of soil moisture to the plant growth. Such improvements can lead to a better outlook of LFM by
accounting for the leading time that plants need to assimilate the moisture for the growing cycle.

Furthermore, local and plant-specific factors need to be considered if extending the application
of the SMAP SM-based model to a broader geographical extent. In this study, we focused on
a homogeneous land cover type and one plant species. If applied to a broader region of study,
local factors such as land cover type, the stem factor of plants, and soil texture are necessary variables
for consideration. In this study, we found there was a difference between the coastal and mountainous
sites. Rooted in a more fertile soil type (luvisols) with a significantly smaller proportion of gravel,
coastal sites preserve more moisture in the soil, which may explain better performance in the model
using accumulative SM and CGDD, especially during the brown-down period (Figure 11). In the
brown-down period, the available moisture stored in the soil becomes the vital water supply to sustain
the photosynthesis of plants. Coastal sites not only preserve more water input from precipitation in the
soil, but are also exposed to a smaller loss of moisture due to the higher humidity from fog/cloud and
the moist sea breeze. Such difference across sites needs further investigation if extended to a greater
geographical area. Lastly, a combination of LFM observation over different species at each site should
be used to address the mixed signals from land surfaces covered by pixels of 9 km × 9 km of SMAP SM.
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4.2. Separating Green-up and Brown-down Period for LFM Modeling

All the multi-variant models using SMAP SM and CGDD discussed in this study were constructed
separately for the green-up and brown-down periods divided by key phenological metrics, such as
peak time, season start, and season end. Compared with dividing data by fixed calendar months to
differentiate between seasons, this strategy better addressed seasonality in the LFM time series by
accounting for actual phenological processes. As the phenological metrics were calculated by year and
by site, they better described the inter-annual and cross-site changes of the growing season than fixed
calendar months in previous studies [11].

In addition, modeling LFM separately for the brown-down and green-up periods also accounted
for the different roles that SMAP SM and CGDD played in these two different phenological stages
of plant growth. During the green-up period, both factors positively contribute to the growth of
chamise and determine the amount of biomass accumulated in this period. After chamise becomes
mature and reaches its peak growth, the blooming season ends and the biomass starts to wither.
During the withering or brown-down period, CGDD continues to grow and impacts vegetation water
content negatively, due to the loss of moisture through evaporation [52]. In addition, the green-up of
chamise cannot be initiated during the brown-down period even if an abnormal precipitation event
occurs. Therefore, the SMAP SM also plays a different role than during the green-up period, even if
it maintains a positive correlation with the LFM. During the brown-down period, the SMAP SM
describes the present moisture status in the topsoil, an indicator of dryness of the land surface and
fire risk. Compared with studies that differentiate between seasons for modeling [11,18], it is more
reasonable to build multi-variant models separately for the green-up and brown-down periods and
combine the outcomes together to obtain a full time series of estimated LFM.

5. Conclusions

SMAP L-band SM products measure soil moisture residing in the top soil, which serves as a
reservoir for a series of physiological processes in the growing cycle of plants. SMAP L-band SM
provided a new possibility to construct empirical regression models to estimate LFM, a key observation
of vegetation water content for many fire alarm models. Our study on chamise, a wide-spread species
of Mediterranean chaparral in Southern California, USA demonstrated that there was a time lead of
about 60 days in the change of SMAP SM compared with the LFM of chamise. Compared with shifting
the time series to synchronize the SMAP SM to LFM, multi-variant models using the accumulative
SMAP SM calculated using a leading moving window at a size of the lag between SMAP SM and LFM
performed better. Furthermore, we applied a weight function to address the decaying impact from
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moisture in the topsoil measured by SMAP SM, which outperformed the model using non-weighted
accumulative SMAP SM.

In addition, cumulative GDD (CGDD) as the second variable in the model addressed the heat
needed during the growing cycle and the loss of topsoil moisture that influenced the change of LFM.
We also found distinguishing the green-up and brown-down periods in the growing season of chamise
was helpful to address the different roles that SMAP SM and CGDD played during the growing season.
In conclusion, our investigation for Mediterranean chaparral in Southern California indicated that the
multi-variant model using a weighted accumulative SMAP SM and the CGDD performed the best
in estimating the LFM of chamise. Our model using weighted accumulative SMAP SM and CGDD
yielded an adjusted R2 of 0.529 and an RMSE of 19.876, better than the other SM-based model and the
reference model using MODIS VARI. This model also provided a possible way to calculate the outlook
of LFM using a remotely-sensed land surface metric obtained several weeks ago. Although there was a
significant improvement in the estimation of LFM in the brown-down period compared with other
models discussed in this study, the underestimation of LFM near its peak was still prominent in our
best model.

Future improvements of the study include a more thorough investigation of the determining
factors of the physical processes from the increase of moisture in the topsoil to the assimilation of
moisture by plants. This will help to better determine the size of the leading moving window in
the calculation of accumulative SMAP SM. To reflect the mixed vegetation signal in the 9-km pixel,
different species of LFM data are required to be incorporated in the model. The model also needs to be
tested on a larger geographical extent and a longer period using other available L-band soil moisture
measurement (e.g., SMOS from ESA) or modeled soil moisture products (e.g., ESA Soil Moisture
Climate Change Initiative (CCI)). Local factors such as land cover and soil type should be considered
when extending the geographical area of study.
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Figure S2: Scatterplot of LFM and VOD for LFM sites in Southern California. Colors indicate different seasons,
Figure S3: Averaged LFM, Vegetation Opacity (VO), and smoothed VO using 10-day moving average across LFM
sites in Southern California, Figure S4: Estimated LFM using VARI + Cumulative GDD. Panels indicate models
built for brown down and green up period, as well as the entire dataset Soil texture information is obtained from
the Harmonized World Soil Database (version 1.2).
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