2,083 research outputs found
Comparisons of ELISA and Western blot assays for detection of autophagy flux
We analyzed autophagy/mitophagy flux in vitro (C2C12 myotubes) and in vivo (mouse skeletal muscle) following the treatments of autophagy inducers (starvation, rapamycin) and a mitophagy inducer (carbonyl cyanide m-chlorophenylhydrazone, CCCP) using two immunodetection methods, ELISA and Western blotting, and compared their working range, accuracy, and reliability. The ELISAs showed a broader working range than that of the LC3 Western blots (Table 1). Table 2 showed that data value distribution was tighter and the average standard error from the ELISA was much smaller than those of the Western blot, directly relating to the accuracy of the assay. Test-retest reliability analysis showed good reliability for three individual ELISAs (interclass correlation, ≥ 0.7), but poor reliability for three individual Western blots (interclass correlation, ≤ 0.4) (Table 3). Keywords: Autophagy, Mitophagy, ELISA, Western blot, Skeletal muscl
Autonomous Control Strategy of DC Microgrid for Islanding mode using Power Line Communication
This paper proposes a DC-bus signaling (DBS) method for autonomous power management in a DC microgrid, used to improve its reliability. Centralized power management systems require communication between the power sources and loads. However, the DBS method operates based on the common DC-bus voltage and does not require communication. Based on the DC-bus voltage band, the DC-bus voltage can be used to inform the status of the DC-bus in various scenarios. The DC microgrid operates independently to maintain the system stably in the DC-bus voltage band. The DC microgrid can be divided into a grid-connected mode and an islanding mode. This paper proposes a control strategy based on power management of various independent components in islanding mode. In addition, the autonomous control method for switching the converter???s operation between grid-connected mode and islanding mode is proposed. A DC microgrid test bed consisting of a grid-connected AC/DC converter, a bidirectional DC/DC converter, a renewable energy simulator, DC home appliances and a DC-bus protector is used to test the proposed control strategy. The proposed autonomous control strategy is experimentally verified using the DC microgrid test bed
Impacts of Detailed Land-Use Types and Urban Heat in an Urban Canopy Model on Local Meteorology and Ozone Levels for Air Quality Modeling in a Coastal City, Korea
An urban canopy model (UCM), with detailed urban land-use and anthropogenic heat information, is required to reproduce and understand the urbanization process and its impact on regional climate and urban air quality. This study investigates the UCM impact on simulated meteorology and surface ozone in the coastal city of Busan using the WRF-SMOKE-CMAQ model coupled with (UCM case), and without the UCM (NOUCM case). The UCM and NOUCM case results suggest that UCM case generally produces warmer temperatures and deeper planetary boundary layer (PBL) heights, especially in the early morning and night time, than the NOUCM case. Owing to urban heating and enhanced turbulent mixing incorporation in the center of the city, the sea breeze in the UCM case tends to penetrate faster and more strongly than in the NOUCM case. After sea breeze arrival at the urban center, the urban heat island effect prevents its penetration further inland. In the UCM case in the late afternoon, local meteorological changes induce remarkable increases in simulated O3 concentrations over the downwind (up to 17.1 ppb) and downtown (up to 10.6 ppb) areas. This is probably due to an increase in temperature in the urban areas and the wind convergence zone movement due to the sea breeze interaction and offshore flows. The increase in O3 concentration in the late afternoon results in the model bias reduction under previously underestimated O3 conditions due to high NOx emissions. The simulated O3 concentrations in the UCM case are more similar to the observed O3 concentrations compared to those of the NOUCM case
Comparison of total body irradiation-based or non-total body irradiation-based conditioning regimens for allogeneic stem cell transplantation in pediatric leukemia patients
Purpose : This study aims to compare the outcome of total body irradiation (TBI)- or non-TBI-containing conditioning regimens for leukemia in children. Methods : We retrospectively evaluated 77 children conditioned with TBI (n=40) or non-TBI (n=37) regimens, transplanted at Chonnam National University Hospital between January 1996 and December 2007. The type of transplantation, disease status at the time of transplant, conditioning regimen, engraftment kinetics, development of graft-versus-host disease (GVHD), complications, cause of deaths, overall survival (OS), and event-free survival (EFS) were compared between the 2 groups. Results : Among 34 patients with acute lymphoblastic leukemia (ALL), 28 (82.4%) were in the TBI group, while 72.7% (24/33) of patients with myeloid leukemia were in the non-TBI group. Although the 5-year EFS of the 2 groups was similar for all patients (62% vs 63%), the TBI group showed a better 5-year EFS than the non-TBI group when only ALL patients were analyzed (65% vs 17%; P =0.005). In acute myelogenous leukemia patients, the non-TBI group had better survival tendency (73% vs 38%; P=0.089). The incidence of GVHD, engraftment, survival, cause of death, and late complications was not different between the 2 groups. Conclusion : The TBI and non-TBI groups showed comparable results, but the TBI group showed a significantly higher 5-year EFS than the non-TBI group in ALL patients. Further prospective, randomized controlled studies involving larger number of patients are needed to assess the late-onset complications and to compare the socioeconomic quality of life
Tristetraprolin down-regulates IL-23 expression in colon cancer cells.
mRNA 3'UTR demonstrated that the ARE cluster between the third and fifth AREs was responsible for TTP-mediated destabilization of IL-23 mRNA. A RNA electrophoretic mobility shift assay confirmed that TTP binds to this ARE cluster. Taken together, these results demonstrate that TTP acts as a negative regulator of IL-23 gene expression in mouse colon cancer cells and suggest its potential application as a novel therapeutic target to control IL-23-mediated tumor promotion
The farnesoid X receptor negatively regulates osteoclastogenesis in bone remodeling and pathological bone loss
Farnesoid X receptor (FXR, NR1H4) is a member of the nuclear receptor superfamily of ligand-activated transcription factors. Since the role of FXR in osteoclast differentiation remains ill-defined, we investigated the biological function of FXR on osteoclastogenesis, using FXR-deficient mice. We demonstrated that FXR deficiency increases osteoclast formation in vitro and in vivo. First, FXR deficiency was found to accelerate osteoclast formation via down-regulation of c-Jun N-terminal kinase (JNK) 1/2 expression. Increased expression of peroxisome proliferator-activated receptor (PPAR)γ and peroxisome proliferator-activated receptor gamma coactivator 1 (PGC- 1)β seems to mediate the pro-osteoclastogenic effect of FXR deficiency via the JNK pathway. In addition, we found that FXR deficiency downregulated the expression of interferon-β (IFN-β), a strong inhibitor of osteoclastogenesis, via receptor activator of nuclear factor-kappaB ligand (RANKL). We further suggested that interference of IFN-β expression by FXR deficiency impaired the downstream JAK3-STAT1 signaling pathways, which in turn increased osteoclast formation. Finally, FXR deficiency accelerated unloading- or ovariectomy-induced bone loss in vivo. Thus, our findings demonstrate that FXR is a negative modulator in osteoclast differentiation and identify FXR as a potential therapeutic target for postmenopausal osteoporosis and unloadinginduced bone loss
Performance analysis of GPS / Radar integrated navigation system
GPS is used in various navigation fields. However, visibility is lowered in such an environment as urban canyon, and navigation performance deteriorates due to the visibility, multipath effect. So, in order to improve navigation performance in this environment, methods of integration with other sensors have been studied. In this paper, we use radar to measure the range of the landmark with known position. An integration algorithm is designed using GPS pseudorange and radar measurement
Neural Correlates of Transient Mal de Debarquement Syndrome: Activation of Prefrontal and Deactivation of Cerebellar Networks Correlate With Neuropsychological Assessment
Background: Mal de debarquement syndrome (MdDS) is characterized by a subjective perception of self-motion after exposure to passive motion, mostly after sea travel. A transient form of MdDS (t-MdDS) is common in healthy individuals without pathophysiological certainty. In the present cross-sectional study, the possible neuropsychiatric and functional neuroimaging changes in local fishermen with t-MdDS were evaluated.
Methods: The present study included 28 fishermen from Buan County in South Korea; 15 (15/28, 53.6%) participants experienced t-MdDS for 1–6 h, and 13 were asymptomatic (13/28, 46.4%). Vestibular function tests were performed using video-oculography, the video head impulse test, and ocular and cervical vestibular-evoked myogenic potentials. Visuospatial function was also assessed by the Corsi block test. Brain imaging comprised structural MRI, resting-state functional MRI, and [18F]FDG PET scans.
Results: The results of vestibular function tests did not differ between the fishermen with and those without t-MdDS. However, participants with t-MdDS showed better performance in visuospatial memory function than those without t-MdDS (6.40 vs. 5.31, p-value = 0.016) as determined by the Corsi block test. Structural brain MRIs were normal in both groups. [18F]FDG PET showed a relative hypermetabolism in the bilateral occipital and prefrontal cortices and hypometabolism in the vestibulocerebellum (nodulus and uvula) in participants with t-MdDS compared to those without t-MdDS. Resting-state functional connectivities were significantly decreased between the vestibular regions of the flocculus, superior temporal gyrus, and parietal operculum and the visual association areas of the middle occipital gyrus, fusiform gyrus, and cuneus in participants with t-MdDS. Analysis of functional connectivity of the significant regions in the PET scans revealed decreased connectivity between the prefrontal cortex and visual processing areas in the t-MdDS group.
Conclusion: Increased visuospatial memory, altered metabolism in the prefrontal cortex, visual cognition cortices, and the vestibulocerebellum, and decreased functional connectivity between these two functional areas might indicate reductions in the integration of vestibular input and enhancement of visuospatial attention in subjects with t-MdDS. Current functional neuroimaging similarities from transient MdDS via chronic MdDS to functional dizziness and anxiety disorders suggest a shared mechanism of enhanced self-awareness as a kind of continuum or as overlap disorders
- …