206 research outputs found

    Spectroscopic and Theoretical Study of CuI Binding to His111 in the Human Prion Protein Fragment 106-115

    Get PDF
    The ability of the cellular prion protein (PrPC) to bind copper in vivo points to a physiological role for PrPC in copper transport. Six copper binding sites have been identified in the nonstructured N-terminal region of human PrPC. Among these sites, the His111 site is unique in that it contains a MKHM motif that would confer interesting CuI and CuII binding properties. We have evaluated CuI coordination to the PrP(106-115) fragment of the human PrP protein, using NMR and X-ray absorption spectroscopies and electronic structure calculations. We find that Met109 and Met112 play an important role in anchoring this metal ion. CuI coordination to His111 is pH-dependent: at pH >8, 2N1O1S species are formed with one Met ligand; in the range of pH 5-8, both methionine (Met) residues bind to CuI, forming a 1N1O2S species, where N is from His111 and O is from a backbone carbonyl or a water molecule; at pH <5, only the two Met residues remain coordinated. Thus, even upon drastic changes in the chemical environment, such as those occurring during endocytosis of PrPC (decreased pH and a reducing potential), the two Met residues in the MKHM motif enable PrPC to maintain the bound CuI ions, consistent with a copper transport function for this protein. We also find that the physiologically relevant CuI-1N1O2S species activates dioxygen via an inner-sphere mechanism, likely involving the formation of a copper(II) superoxide complex. In this process, the Met residues are partially oxidized to sulfoxide; this ability to scavenge superoxide may play a role in the proposed antioxidant properties of PrPC. This study provides further insight into the CuI coordination properties of His111 in human PrPC and the molecular mechanism of oxygen activation by this site.Fil: Arcos López, Trinidad. Instituto Politécnico Nacional. Centro de Investigación y de Estudios Avanzado; MéxicoFil: Qayyum, Munzarin. University of Stanford; Estados UnidosFil: Rivillas Acevedo, Lina. Instituto Politécnico Nacional. Centro de Investigación y de Estudios Avanzado; MéxicoFil: Miotto, Marco César. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario. Universidad Nacional de Rosario. Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario; Argentina. Max Planck Laboratory for Structural Biology; ArgentinaFil: Grande Aztatzi, Rafael. Instituto Politécnico Nacional. Centro de Investigación y de Estudios Avanzado; MéxicoFil: Fernandez, Claudio Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario. Universidad Nacional de Rosario. Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario; Argentina. Max Planck Laboratory for Structural Biology; ArgentinaFil: Hedman, Britt. University of Stanford; Estados UnidosFil: Hodgson, Keith O.. University of Stanford; Estados UnidosFil: Vela, Alberto. Instituto Politécnico Nacional. Centro de Investigación y de Estudios Avanzado; MéxicoFil: Solomon, Edward I.. University of Stanford; Estados UnidosFil: Quintanar, Liliana. Instituto Politécnico Nacional. Centro de Investigación y de Estudios Avanzado; Méxic

    Risk and protective factors for drug dependence in two Moroccan high-risk male populations

    Get PDF
    Background Substance use is linked to biological, environmental, and social factors. This study provides insights on protective and risk factors for drug dependence in two Moroccan, high-risk, male samples. Methods Data from the “Mental and Somatic Health without borders” (MeSHe) survey were utilized in the present study. The MeSHe survey assesses somatic and mental health parameters by self-report from prison inmates (n = 177) and outpatients from an addiction institution (n = 54). The “Drug dependence” and the “No drug dependence” groups were identified based on the Arabic version of the Drug Use Disorder Identification Test’s (DUDIT) validated cutoff for identifying individuals with drug dependence, specifically in Morocco. Results The majority of participants who had at least high school competence (67.6%), were living in a partnership (53.7%), were a parent (43.1%), and/or had a job (86.8%) belonged to the “No drug dependence” group, while the presence of mental health problems was typical among the “Drug dependence” group (47.4%). A multivariable regression model (χ2 (df = 5, N = 156) = 63.90, p < 0.001) revealed that the presence of depression diagnosis remains a significant risk factor, while a higher level of education, having a child, and being employed are protective factors from drug dependence. Discussion Findings support the importance of increasing academic competence and treating depression as prevention from the persistence of drug addiction in male high-risk populations

    Structure of the Reduced Copper Active Site in Pre-Processed Galactose Oxidase: Ligand Tuning for One-Electron O2 Activation in Cofactor Biogenesis

    Get PDF
    Galactose oxidase (GO) is a copper-dependent enzyme that accomplishes 2e- substrate oxidation by pairing a single copper with an unusual cysteinylated tyrosine (Cys-Tyr) redox cofactor. Previous studies have demonstrated that the post-translational biogenesis of Cys-Tyr is copper- and O2-dependent, resulting in a self-processing enzyme system. To investigate the mechanism of cofactor biogenesis in GO, the active-site structure of Cu(I)-loaded GO was determined using X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy, and density-functional theory (DFT) calculations were performed on this model. Our results show that the active-site tyrosine lowers the Cu potential to enable the thermodynamically unfavorable 1e- reduction of O2, and the resulting Cu(II)-O2¿- is activated toward H atom abstraction from cysteine. The final step of biogenesis is a concerted reaction involving coordinated Tyr ring deprotonation where Cu(II) coordination enables formation of the Cys-Tyr cross-link. These spectroscopic and computational results highlight the role of the Cu(I) in enabling O2 activation by 1e- and the role of the resulting Cu(II) in enabling substrate activation for biogenesis

    Sulfur K-Edge XAS Studies of the Effect of DNA Binding on the [Fe_4S_4] Site in EndoIII and MutY

    Get PDF
    S K-edge X-ray absorption spectroscopy (XAS) was used to study the [Fe_4S_4] clusters in the DNA repair glycosylases EndoIII and MutY to evaluate the effects of DNA binding and solvation on Fe–S bond covalencies (i.e., the amount of S 3p character mixed into the Fe 3d valence orbitals). Increased covalencies in both iron–thiolate and iron–sulfide bonds would stabilize the oxidized state of the [Fe_4S_4] clusters. The results are compared to those on previously studied [Fe_4S_4] model complexes, ferredoxin (Fd), and to new data on high-potential iron–sulfur protein (HiPIP). A limited decrease in covalency is observed upon removal of solvent water from EndoIII and MutY, opposite to the significant increase observed for Fd, where the [Fe_4S_4] cluster is solvent exposed. Importantly, in EndoIII and MutY, a large increase in covalency is observed upon DNA binding, which is due to the effect of its negative charge on the iron–sulfur bonds. In EndoIII, this change in covalency can be quantified and makes a significant contribution to the observed decrease in reduction potential found experimentally in DNA repair proteins, enabling their HiPIP-like redox behavior

    Spectroscopic and DFT studies of second-sphere variants of the type 1 copper site in azurin: covalent and nonlocal electrostatic contributions to reduction potentials

    Get PDF
    The reduction potentials (E^0) of type 1 (T1) or blue copper (BC) sites in proteins and enzymes with identical first coordination spheres around the redox active copper ion can vary by ~400 mV. Here, we use a combination of low-temperature electronic absorption and magnetic circular dichroism, electron paramagnetic resonance, resonance Raman, and S K-edge X-ray absorption spectroscopies to investigate a series of second-sphere variants--F114P, N47S, and F114N in Pseudomonas aeruginosa azurin--which modulate hydrogen bonding to and protein-derived dipoles nearby the Cu-S(Cys) bond. Density functional theory calculations correlated to the experimental data allow for the fractionation of the contributions to tuning E(0) into covalent and nonlocal electrostatic components. These are found to be significant, comparable in magnitude, and additive for active H-bonds, while passive H-bonds are mostly nonlocal electrostatic in nature. For dipoles, these terms can be additive to or oppose one another. This study provides a methodology for uncoupling covalency from nonlocal electrostatics, which, when coupled to X-ray crystallographic data, distinguishes specific local interactions from more long-range protein/active interactions, while affording further insight into the second-sphere mechanisms available to the protein to tune the E^0 of electron-transfer sites in biology

    Metalloprotein entatic control of ligand-metal bonds quantified by ultrafast x-ray spectroscopy

    Get PDF
    The multifunctional protein cytochrome c (cyt c) plays key roles in electron transport and apoptosis, switching function by modulating bonding between a heme iron and the sulfur in a methionine residue. This Fe-S(Met) bond is too weak to persist in the absence of protein constraints. We ruptured the bond in ferrous cyt c using an optical laser pulse and monitored the bond reformation within the protein active site using ultrafast x-ray pulses from an x-ray free-electron laser, determining that the Fe-S(Met) bond enthalpy is ~4 kcal/mol stronger than in the absence of protein constraints. The 4 kcal/mol is comparable with calculations of stabilization effects in other systems, demonstrating how biological systems use an entatic state for modest yet accessible energetics to modulate chemical function

    Mechanism of selective benzene hydroxylation catalyzed by iron-containing zeolites

    Get PDF
    A direct, catalytic conversion of benzene to phenol would have wide-reaching economic impacts. Fe zeolites exhibit a remarkable combination of high activity and selectivity in this conversion, leading to their past implementation at the pilot plant level. There were, however, issues related to catalyst deactivation for this process. Mechanistic insight could resolve these issues, and also provide a blueprint for achieving high performance in selective oxidation catalysis. Recently, we demonstrated that the active site of selective hydrocarbon oxidation in Fe zeolites, named α-O, is an unusually reactive Fe(IV)=O species. Here, we apply advanced spectroscopic techniques to determine that the reaction of this Fe(IV)=O intermediate with benzene in fact regenerates the reduced Fe(II) active site, enabling catalytic turnover. At the same time, a small fraction of Fe(III)-phenolate poisoned active sites form, defining a mechanism for catalyst deactivation. Density-functional theory calculations provide further insight into the experimentally defined mechanism. The extreme reactivity of α-O significantly tunes down (eliminates) the rate-limiting barrier for aromatic hydroxylation, leading to a diffusion-limited reaction coordinate. This favors hydroxylation of the rapidly diffusing benzene substrate over the slowly diffusing (but more reactive) oxygenated product, thereby enhancing selectivity. This defines a mechanism to simultaneously attain high activity (conversion) and selectivity, enabling the efficient oxidative upgrading of inert hydrocarbon substrates

    High-Resolution Analysis of Zn^2+ Coordination in the Alkaline Phosphatase Superfamily by EXAFS and X-ray Crystallography

    Get PDF
    Comparisons among evolutionarily related enzymes offer opportunities to reveal how structural differences produce different catalytic activities. Two structurally related enzymes, Escherichia coli alkaline phosphatase (AP) and Xanthomonas axonopodis nucleotide pyrophosphatase/phosphodiesterase (NPP), have nearly identical binuclear Zn^2+ catalytic centers but show tremendous differential specificity for hydrolysis of phosphate monoesters or phosphate diesters. To determine if there are differences in Zn^2+ coordination in the two enzymes that might contribute to catalytic specificity, we analyzed both x-ray absorption spectroscopic and x-ray crystallographic data. We report a 1.29-Å crystal structure of AP with bound phosphate, allowing evaluation of interactions at the AP metal site with high resolution. To make systematic comparisons between AP and NPP, we measured zinc extended x-ray absorption fine structure for AP and NPP in the free-enzyme forms, with AMP and inorganic phosphate groundstate analogs and with vanadate transition-state analogs. These studies yielded average zinc–ligand distances in AP and NPP free-enzyme forms and ground-state analog forms that were identical within error, suggesting little difference in metal ion coordination among these forms. Upon binding of vanadate to both enzymes, small increases in average metal–ligand distances were observed, consistent with an increased coordination number. Slightly longer increases were observed in NPP relative to AP, which could arise from subtle rearrangements of the active site or differences in the geometry of the bound vanadyl species. Overall, the results suggest that the binuclear Zn^2+ catalytic site remains very similar between AP and NPP during the course of a reaction cycle
    corecore