1,610 research outputs found

    Determination of total phosphorus in extracts

    Get PDF
    Determination of total phosphorus in extract

    Germination of microconidia from selected Neurospora strains

    Get PDF
    Germination of microconidia from selected Neurospora strain

    Optimal light for conidiation

    Get PDF
    Optimal light for conidiatio

    New Limits on the Polarized Anisotropy of the Cosmic Microwave Background at Subdegree Angular Scales

    Full text link
    We update the limit from the 90 GHz PIQUE ground-based polarimeter on the magnitude of any polarized anisotropy of the cosmic microwave radiation. With a second year of data, we have now limited both Q and U on a ring of 1 degree radius. The window functions are broad: for E-mode polarization, the effective l is = 191 +143 -132. We find that the E-mode signal can be no greater than 8.4 microK (95% CL), assuming no B-mode polarization. Limits on a possible B-mode signal are also presented.Comment: 4 pages, 3 figures, submitted to Astrophysical Journal Letter

    New Insights into Variations in Enceladus Plume Particle Launch Velocities from Cassini-VIMS spectral data

    Full text link
    Enceladus' plume consists mainly of a mixture of water vapor and solid ice particles that may originate from a subsurface ocean. The physical processes underlying Enceladus' plume particle dynamics are still being debated, and quantifying the particles' size distribution and launch velocities can help constrain these processes. Cassini's Visual and Infrared Mapping Spectrometer (VIMS) observed the Enceladus plume over a wavelength range of 0.9 micron to 5.0 microns for a significant fraction of Enceladus' orbital period on three dates in the summer of 2017. We find that the relative brightness of the plume on these different dates varies with wavelength, implying that the particle size distribution in the plume changes over time. These observations also enable us to study how the particles' launch velocities vary with time and observed wavelength. We find that the typical launch velocity of particles remains between 140 m/s and 148 m/s at wavelengths between 1.2 microns and 3.7 microns. This may not be consistent with prior models where particles are only accelerated by interactions with the vent walls and gas, and could imply that mutual particle collisions close to the vent are more important than previously recognized.Comment: 13 pages, 8 figures, accepted for publication in PS

    The population of propellers in Saturn's A Ring

    Full text link
    We present an extensive data set of ~150 localized features from Cassini images of Saturn's Ring A, a third of which are demonstrated to be persistent by their appearance in multiple images, and half of which are resolved well enough to reveal a characteristic "propeller" shape. We interpret these features as the signatures of small moonlets embedded within the ring, with diameters between 40 and 500 meters. The lack of significant brightening at high phase angle indicates that they are likely composed primarily of macroscopic particles, rather than dust. With the exception of two features found exterior to the Encke Gap, these objects are concentrated entirely within three narrow (~1000 km) bands in the mid-A Ring that happen to be free from local disturbances from strong density waves. However, other nearby regions are similarly free of major disturbances but contain no propellers. It is unclear whether these bands are due to specific events in which a parent body or bodies broke up into the current moonlets, or whether a larger initial moonlet population has been sculpted into bands by other ring processes.Comment: 31 pages, 10 figures; Accepted at A
    corecore