1,617 research outputs found
Team H&H RC Baja Drivetrain
A need for a drivetrain and steering system that could provide locomotion and directional control for the H&H RC Baja racecar was needed. The RC Baja event is a competition hosted by the CWU ASME club in which teams of engineering students compete against each other to test the effectiveness of the respective designs. The car needed to be able to compete in three events: a drag race, solemn course, and a Baja event. This was accomplished by designing and manufacturing several parts of different materials utilizing a range of manufacturing techniques to produce sub-assemblies and that made up the drivetrain systems. The system were constructed using a variety of methods including; matching of parts, 3d printing, and off the shelf parts. The RC car was designed in SolidWorks a parametric modeling software to ensure manufactured parts were easy to assemble the systems were designed using; material analysis, statics, and concepts from mechanical design, across 12 unique engineering analysis to guide the engineering decisions and manufacturing processes and ensure the car would meet all requirements set forth by not drivetrain engineer but also the suspension and chassis Engineer The combination of all analysis, decision matrixes, designing, manufacturing and assembly, resulted in a top speed of 25mph was able to climb inclines up to 30 degrees and weighted less than 4 pounds
AIROscope stellar acquisition
The acquisition system which operates in conjunction with a balloon-borne TV system, boresighted to a telescope is described. It has two main functions, a star field monitor and an offset star tracker. The design of the system was strongly influenced by the TV camera, which uses the same interlaced scanning system as is employed in commercial television broadcasting. To reduce power and bandwidth requirements, the star field information transmitted in our system consists only of the horizontal and vertical coordinates of each star and its brightness. As a star field monitor the system provides video thresholding, camera blemish suppression, coordinate digitization in 3 axes, circuity to recognize as single star the dispersed video signals resulting from one star overlapping adjacent scanning lines and storage of all signals for readout by the telemetry at appropriate times
Microbial Endemism and Biogeography
The topic of microbial biogeography is almost 100 years old, however, when confronted with questions about the existence and extent of endemism in the microbial world, many microbiologists respond with opinions and theoretical arguments rather than examples of well-conducted studies. We begin this chapter with an overview of this debate as it applies to free-living prokayotes in part because there are relatively few good microbial biogeography studies. Furthermore, the arguments help to frame microbial biogeography in the larger context of biodiversity in that if endemism is common, then many more species exist
Compact, Deep-Penetrating Geothermal Heat Flow Instrumentation for Lunar Landers
Geothermal heat flow is obtained as a product of the two separate measurements of geothermal gradient in, and thermal conductivity of, the vertical soi/rock/regolith interval penetrated by the instrument. Heat flow measurements are a high priority for the geophysical network missions to the Moon recommended by the latest Decadal Survey [I] and previously the International Lunar Network [2]. The two lunar-landing missions planned later this decade by JAXA [3] and ESA [4] also consider geothermal measurements a priority
Development of a Compact, Deep-Penetrating Heat Flow Instrument for Lunar Landers: In-Situ Thermal Conductivity System
Geothermal heat flow is obtained as a product of the geothermal gradient and the thermal conductivity of the vertical soil/rock/regolith interval penetrated by the instrument. Heat flow measurements are a high priority for the geophysical network missions to the Moon recommended by the latest Decadal Survey and previously the International Lunar Network. One of the difficulties associated with lunar heat flow measurement on a robotic mission is that it requires excavation of a relatively deep (approx 3 m) hole in order to avoid the long-term temporal changes in lunar surface thermal environment affecting the subsurface temperature measurements. Such changes may be due to the 18.6-year-cylcle lunar precession, or may be initiated by presence of the lander itself. Therefore, a key science requirement for heat flow instruments for future lunar missions is to penetrate 3 m into the regolith and to measure both thermal gradient and thermal conductivity. Engineering requirements are that the instrument itself has minimal impact on the subsurface thermal regime and that it must be a low-mass and low-power system like any other science instrumentation on planetary landers. It would be very difficult to meet the engineering requirements, if the instrument utilizes a long (> 3 m) probe driven into the ground by a rotary or percussive drill. Here we report progress in our efforts to develop a new, compact lunar heat flow instrumentation that meets all of these science and engineering requirements
Improved Data Reduction Algorithm for the Needle Probe Method Applied to In-Situ Thermal Conductivity Measurements of Lunar and Planetary Regoliths
The needle probe method (also known as the' hot wire' or 'line heat source' method) is widely used for in-situ thermal conductivity measurements on soils and marine sediments on the earth. Variants of this method have also been used (or planned) for measuring regolith on the surfaces of extra-terrestrial bodies (e.g., the Moon, Mars, and comets). In the near-vacuum condition on the lunar and planetary surfaces, the measurement method used on the earth cannot be simply duplicated, because thermal conductivity of the regolith can be approximately 2 orders of magnitude lower. In addition, the planetary probes have much greater diameters, due to engineering requirements associated with the robotic deployment on extra-terrestrial bodies. All of these factors contribute to the planetary probes requiring much longer time of measurement, several tens of (if not over a hundred) hours, while a conventional terrestrial needle probe needs only 1 to 2 minutes. The long measurement time complicates the surface operation logistics of the lander. It also negatively affects accuracy of the thermal conductivity measurement, because the cumulative heat loss along the probe is no longer negligible. The present study improves the data reduction algorithm of the needle probe method by shortening the measurement time on planetary surfaces by an order of magnitude. The main difference between the new scheme and the conventional one is that the former uses the exact mathematical solution to the thermal model on which the needle probe measurement theory is based, while the latter uses an approximate solution that is valid only for large times. The present study demonstrates the benefit of the new data reduction technique by applying it to data from a series of needle probe experiments carried out in a vacuum chamber on JSC-1A lunar regolith stimulant. The use of the exact solution has some disadvantage, however, in requiring three additional parameters, but two of them (the diameter and the volumetric heat capacity of the probe) can be measured and the other (the volumetric heat capacity of the regolith/stimulant) may be estimated from the surface geologic observation and temperature measurements. Therefore, overall, the new data reduction scheme would make in-situ thermal conductivity measurement more practical on planetary missions
Development of Compact, Modular Lunar Heat Flow Probes
Geothermal heat flow measurements are a high priority for the future lunar geophysical network missions recommended by the latest Decadal Survey and previously the International Lunar Network. Because the lander for such a mission will be relatively small, the heat flow instrumentation must be a low-mass and low-power system. The instrument needs to measure both thermal gradient and thermal conductivity of the regolith penetrated. It also needs to be capable of excavating a deep enough hole (approx. 3 m) to avoid the effect of potential long-term changes of the surface thermal environment. The recently developed pneumatic excavation system can largely meet the low-power, low-mass, and the depth requirements. The system utilizes a stem which winds out of a pneumatically driven reel and pushes its conical tip into the regolith. Simultaneously, gas jets, emitted from the cone tip, loosen and blow away the soil. The thermal sensors consist of resistance temperature detectors (RTDs) embedded on the stem and an insitu thermal conductivity probe attached to the cone tip. The thermal conductivity probe consists of a short 'needle' (2.4-mm diam. and 15- to 20-mm length) that contains a platinum RTD wrapped in a coil of heater wire. During a deployment, when the penetrating cone reaches a desired depth, it stops blowing gas, and the stem pushes the needle into the yet-to-be excavated, undisturbed bottom soil. Then, it begins heating and monitors the temperature. Thermal conductivity of the soil can determined from the rate of temperature increase with time. When the measurement is complete, the system resumes excavation until it reaches the next targeted depth
Depression-Related Impairments in Prospective Memory
Time-based prospective memory, the ability to carry out a future intention at a specified time, was found to be impaired in a community sample of clinically depressed adults, relative to a nondepressed sample. Nondepressed participants monitored the time more frequently and, in the final block of the task, accelerated time-monitoring as the target time for the prospective memory response approached. These results are consistent with previous findings of depression-related impairments in retrospective memory tasks that require controlled, self-initiated processing
Conservation Laws in Cellular Automata
If X is a discrete abelian group and B a finite set, then a cellular
automaton (CA) is a continuous map F:B^X-->B^X that commutes with all X-shifts.
If g is a real-valued function on B, then, for any b in B^X, we define G(b) to
be the sum over all x in X of g(b_x) (if finite). We say g is `conserved' by F
if G is constant under the action of F. We characterize such `conservation
laws' in several ways, deriving both theoretical consequences and practical
tests, and provide a method for constructing all one-dimensional CA exhibiting
a given conservation law.Comment: 19 pages, LaTeX 2E with one (1) Encapsulated PostScript figure. To
appear in Nonlinearity. (v2) minor changes/corrections; new references added
to bibliograph
Long-Lasting Science Returns from the Apollo Heat Flow Experiments
The Apollo astronauts deployed geothermal heat flow instruments at landing sites 15 and 17 as part of the Apollo Lunar Surface Experiments Packages (ALSEP) in July 1971 and December 1972, respectively. These instruments continuously transmitted data to the Earth until September 1977. Four decades later, the data from the two Apollo sites remain the only set of in-situ heat flow measurements obtained on an extra-terrestrial body. Researchers continue to extract additional knowledge from this dataset by utilizing new analytical techniques and by synthesizing it with data from more recent lunar orbital missions such as the Lunar Reconnaissance Orbiter. In addition, lessons learned from the Apollo experiments help contemporary researchers in designing heat flow instruments for future missions to the Moon and other planetary bodies. For example, the data from both Apollo sites showed gradual warming trends in the subsurface from 1971 to 1977. The cause of this warming has been debated in recent years. It may have resulted from fluctuation in insolation associated with the 18.6-year-cycle precession of the Moon, or sudden changes in surface thermal environment/properties resulting from the installation of the instruments and the astronauts' activities. These types of reanalyses of the Apollo data have lead a panel of scientists to recommend that a heat flow probe carried on a future lunar mission reach 3 m into the subsurface, approx 0.6 m deeper than the depths reached by the Apollo 17 experiment. This presentation describes the authors current efforts for (1) restoring a part of the Apollo heat flow data that were left unprocessed by the original investigators and (2) designing a compact heat flow instrument for future robotic missions to the Moon. First, at the conclusion of the ALSEP program in 1977, heat flow data obtained at the two Apollo sites after December 1974 were left unprocessed and not properly archived through NASA. In the following decades, heat flow data from January 1975 through February 1976, as well as the metadata necessary for processing the data (the data reduction algorithm, instrument calibration data, etc.), were somehow lost. In 2010, we located 450 original master archival tapes of unprocessed data from all the ALSEP instruments for a period of April through June 1975 at the Washington National Records Center. We are currently extracting the heat flow data packets from these tapes and processing them. Second, on future lunar missions, heat flow probes will likely be deployed by a network of small robotic landers, as recommended by the latest Decadal Survey of the National Academy of Science. In such a scenario, the heat flow probe must be a compact system, and that precludes use of heavy excavation equipment such as a rotary drill for reaching the 3-m target depth. The new heat flow system under development uses a pneumatically driven penetrator. It utilizes a stem that winds out of a reel and pushes its conical tip into the regolith. Simultaneously, gas jets, emitted from the cone tip, loosen and blow away the soil. Lab experiments have demonstrated its effectiveness in lunar vacuum
- …