3 research outputs found

    Development of a new preclinical protocol for the treatment of prostatic adenocarcinoma by hyperthermia with biogenic nanoparticles

    No full text
    La sociĂ©tĂ© NanobactĂ©rie dĂ©veloppe un traitement thermique simple Ă  utiliser, peu couteux et efficace Ă  base de nanoparticules d'oxyde de fer magnĂ©tiques d'origine bactĂ©rienne (magnĂ©tosomes) pour traiter des tumeurs de la prostate. Ces magnĂ©tosomes, lorsqu'ils sont injectĂ©s directement dans une tumeur solide puis placĂ©s dans un champ magnĂ©tique alternatif, permettent d'obtenir une hyperthermie localisĂ©e modĂ©rĂ©e susceptible d'Ă©radiquer la tumeur. La preuve de concept a dĂ©jĂ  Ă©tĂ© apportĂ©e sur l'animal, dans le cas du cancer du sein et du glioblastome (cerveau). Cependant, la transposition de la bobine de champ magnĂ©tique Ă  l'Ă©chelle humaine rencontre des difficultĂ©s et doit donc ĂȘtre remplacĂ©e par une source d'excitation alternative plus facile d'utilisation. DiffĂ©rentes sources d'excitation sont dĂ©crites dans la littĂ©rature mais, pour des raisons de praticitĂ© et de coĂ»t, ce travail porte sur l'utilisation de 2 sources d'excitation dĂ©jĂ  utilisĂ©es en routine dans les hĂŽpitaux. La premiĂšre source d'excitation sĂ©lectionnĂ©e s'inspire de thĂ©rapie sonodynamique (SDT) qui est l'utilisation d'ultrasons (US). La condition optimale d'utilisation a Ă©tĂ© recherchĂ©e en faisant varier diffĂ©rents paramĂštres tels que la taille du transducteur, la frĂ©quence, l'intensitĂ© d'Ă©mission ultrasonore, la concentration des magnĂ©tosomes, le revĂȘtement du magnĂ©tosome. Pour cela, des magnĂ©tosomes ont Ă©tĂ© injectĂ©s directement dans une tumeur de prostate PC3-Red-Fluc prĂ©alablement implantĂ©e chez la souris athymique Nude, puis 6 Ă  10 sessions d'application d'ultrasons ont Ă©tĂ© rĂ©alisĂ©es. Dans la condition la plus optimale, la tumeur primaire disparaĂźt complĂštement sur l'ensemble des souris sans repousse tumorale jusqu'Ă  la fin de leur vie (350 jours, pvalue <0,0001). En revanche, sans magnĂ©tosomes et avec les mĂȘmes paramĂštres, la tempĂ©rature atteinte est la mĂȘme, mais aprĂšs une disparition transitoire de la tumeur principale (90 jours, pvalue <0,0001), une repousse a lieu. La seconde source d'excitation Ă©valuĂ©e est le laser (inspirĂ© de la thĂ©rapie photodynamique (PDT)). Avec ce dispositif, lors de la condition optimale obtenue, seule la moitiĂ© du groupe de souris traitĂ©es voit la tumeur disparaĂźtre jusqu'Ă  la fin de sa vie (300 jours). Cependant, une nette hyperthermie a lieu avec les magnĂ©tosomes irradiĂ©s par laser, ce qui n'est pas le cas sans magnĂ©tosomes, dĂ©montrant de nouveau la rĂ©elle implication des magnĂ©tosomes dans l'Ă©lĂ©vation de tempĂ©rature et donc l'activitĂ© antitumorale. NĂ©anmoins, Ă  l'aide du laser, l'efficacitĂ© globale est moins bonne qu'Ă  l'aide des ultrasons. Ce protocole prĂ©-clinique Ă  l'aide d'ultrasons semble ĂȘtre prometteur pour traiter des adĂ©nocarcinomes de prostate dans le cadre d'essais cliniques chez l'Homme.The Nanobacterie company is developing a simple to use, inexpensive and effective thermal treatment based on bacterial magnetic iron oxide nanoparticles (magnetosomes) to treat prostate tumors. These magnetosomes, when injected directly into a solid tumor and then placed in an alternating magnetic field, provide moderate localized hyperthermia that can eradicate the tumor. Proof of concept has already been demonstrated on animals, in the case of breast cancer and glioblastoma (brain). However, the transposition of the magnetic field coil to the human scale encounters difficulties and must therefore be replaced by an alternative excitation source that is easier to use. Different excitation sources are described in the literature but, for reasons of practicality and cost, this work focuses on the use of 2 excitation sources already routinely used in hospitals. The first excitation source selected is inspired by sonodynamic therapy (SDT) which is the use of low frequency ultrasound (US). The optimal condition of use was sought by varying different parameters such as transducer size, frequency, ultrasound emission intensity, magnetosome concentration, magnetosome coating. For this purpose, magnetosomes coated with carboxymethyl-dextran (M-CMD) or citric acid (M-AC) were injected directly into a PC3-Red-Fluc prostate tumor previously implanted in athymic Nude mice; then 6 to 10 sessions of ultrasound application were performed at a rate of 3 sessions of 10 min per week. In the optimal condition group, the primary tumor disappeared completely in all mice without tumor regrowth until the end of their lives (350 days, pvalue <0.0001). In contrast, without magnetosomes and with the same parameters the temperature reached is the same, but after a transient disappearance of the primary tumor (median at 90 days, pvalue <0.0001), regrowth occurs. The second excitation source evaluated is the laser (inspired by photodynamic therapy (PDT)). With this device, the optimal condition obtained, only half of the group of treated mice sees the tumor disappear until the end of its life (300 days). However, a clear hyperthermia occurs with laser-irradiated M-CMD but not without magnetosomes, demonstrating again the real involvement of magnetosomes in the temperature elevation and thus the antitumor activity. Nevertheless, the overall efficacy with laser is less good than with ultrasound. This pre-clinical protocol using ultrasound source appears to be promising for treating prostate adenocarcinoma in human clinical trials

    High‐Mobility Group Box 1–Signaling Inhibition With Glycyrrhizin Prevents Cerebral T‐Cell Infiltration After Cardiac Arrest

    No full text
    Background High‐mobility group box 1 (HMGB1) is a major promotor of ischemic injuries and aseptic inflammatory responses. We tested its inhibition on neurological outcome and systemic immune response after cardiac arrest (CA) in rabbits. Methods and Results After 10 minutes of ventricular fibrillation, rabbits were resuscitated and received saline (control) or the HMGB1 inhibitor glycyrrhizin. A sham group underwent a similar procedure without CA. After resuscitation, glycyrrhizin blunted the successive rises in HMGB1, interleukin‐6, and interleukin‐10 blood levels as compared with control. Blood counts of the different immune cell populations were not different in glycyrrhizin versus control. After animal awakening, neurological outcome was improved by glycyrrhizin versus control, regarding both clinical recovery and histopathological damages. This was associated with reduced cerebral CD4+ and CD8+ T‐cell infiltration beginning 2 hours after CA. Conversely, granulocytes' attraction or loss of microglial cells or cerebral monocytes were not modified by glycyrrhizin after CA. These modifications were not related to the blood–brain barrier preservation with glycyrrhizin versus control. Interestingly, the specific blockade of the HMGB1 receptor for advanced glycation end products by FPS‐ZM1 recapitulated the neuroprotective effects of glycyrrhizin. Conclusions Our findings support that the early inhibition of HMGB1‐signaling pathway prevents cerebral chemoattraction of T cells and neurological sequelae after CA. Glycyrrhizin could become a clinically relevant therapeutic target in this situation
    corecore