3,487 research outputs found

    External losses in photoemission from strongly correlated quasi two-dimensional solids

    Full text link
    New expressions are derived for photoemission, which allow experimental electron energy loss data to be used for estimating losses in photoemission. The derivation builds on new results for dielectric response and mean free paths of strongly correlated systems of two dimensional layers. Numerical evaluations are made for Bi2Sr2CaCu2O8Bi_{2}Sr_{2}CaCu_{2}O_{8} (Bi2212) by using a parametrized loss function. The mean free path for Bi2212 is calculated and found to be substantially larger than obtained by Norman et al in a recent paper. The photocurrent is expressed as the convolution of the intrinsic approximation for the current from a specific 2D layer with an effective loss function. The observed current is the sum of such currents from the first few layers. The photo electron from a specific CuOCuO layer is found to excite low energy acoustic plasmon modes due to the coupling between the CuOCuO layers. These modes give rise to an asymmetric power law broadening of the photo current an isolated two dimensional layer would have given. We define an asymmetry index where a contribution from a Luttinger lineshape is additive to the contribution from our broadening function. Already the loss effect considered here gives broadening comparable to what is observed experimentally. A superconductor with a gapped loss function is predicted to have a peak-dip-hump lineshape similar to what has been observed, and with the same qualitative behavior as predicted in the recent work by Campuzano et al.Comment: 17 pages, 10 figure

    GW band structure of InAs and GaAs in the wurtzite phase

    Full text link
    We report the first quasiparticle calculations of the newly observed wurtzite polymorph of InAs and GaAs. The calculations are performed in the GW approximation using plane waves and pseudopotentials. For comparison we also report the study of the zinc-blende phase within the same approximations. In the InAs compound the In 4d electrons play a very important role: whether they are frozen in the core or not, leads either to a correct or a wrong band ordering (negative gap) within the Local Density Appproximation (LDA). We have calculated the GW band structure in both cases. In the first approach, we have estimated the correction to the pd repulsion calculated within the LDA and included this effect in the calculation of the GW corrections to the LDA spectrum. In the second case, we circumvent the negative gap problem by first using the screened exchange approximation and then calculating the GW corrections starting from the so obtained eigenvalues and eigenfunctions. This approach leads to a more realistic band-structure and was also used for GaAs. For both InAs and GaAs in the wurtzite phase we predict an increase of the quasiparticle gap with respect to the zinc-blende polytype.Comment: 9 pages, 6 figures, 3 table

    Theoretical analysis of STM-derived lifetimes of excitations in the Shockley surface state band of Ag(111)

    Full text link
    We present a quantitative many-body analysis using the GW approximation of the decay rate Γ\Gamma due to electron-electron scattering of excitations in the Shockley surface state band of Ag(111), as measured using the scanning tunnelling microscope (STM). The calculations include the perturbing influence of the STM, which causes a Stark-shift of the surface state energy EE and concomitant increase in Γ\Gamma. We find Γ\Gamma varies more rapidly with EE than recently found for image potential states, where the STM has been shown to significantly affect measured lifetimes. For the Shockley states, the Stark-shifts that occur under normal tunnelling conditions are relatively small and previous STM-derived lifetimes need not be corrected.Comment: 4 pages, 3 figure

    Electron self-energy in A3C60 (A=K, Rb): Effects of t1u plasmon in GW approximation

    Full text link
    The electron self-energy of the t1u states in A3C60 (A=K, Rb) is calculated using the so-called GW approximation. The calculation is performed within a model which considers the t1u charge carrier plasmon at 0.5 eV and takes into account scattering of the electrons within the t1u band. A moderate reduction (35 %) of the t1u band width is obtained.Comment: 4 pages, revtex, 1 figure more information at http://www.mpi-stuttgart.mpg.de/dokumente/andersen/fullerene

    Screened Interaction and Self-Energy in an Infinitesimally Polarized Electron Gas via the Kukkonen-Overhauser Method

    Full text link
    The screened electron-electron interaction Wσ,σW_{\sigma, \sigma'} and the electron self-energy in an infinitesimally polarized electron gas are derived by extending the approach of Kukkonen and Overhauser. Various quantities in the expression for Wσ,σW_{\sigma, \sigma'} are identified in terms of the relevant response functions of the electron gas. The self-energy is obtained from Wσ,σW_{\sigma, \sigma'} by making use of the GW method which in this case represents a consistent approximation. Contact with previous calculations is made.Comment: 7 page

    Fluctuations of g-factors in metal nanoparticles: Effects of electron-electron interaction and spin-orbit scattering

    Full text link
    We investigate the combined effect of spin-orbit scattering and electron-electron interactions on the probability distribution of gg-factors of metal nanoparticles. Using random matrix theory, we find that even a relatively small interaction strength %(ratio of exchange constant JJ and mean level %spacing \spacing 0.3\simeq 0.3) significantly increases gg-factor fluctuations for not-too-strong spin-orbit scattering (ratio of spin-orbit rate and single-electron level spacing 1/\tau_{\rm so} \spacing \lesssim 1), and leads to the possibility to observe gg-factors larger than two.Comment: RevTex, 2 figures inserte

    Frequency-dependent local interactions and low-energy effective models from electronic structure calculations

    Full text link
    We propose a systematic procedure for constructing effective models of strongly correlated materials. The parameters, in particular the on-site screened Coulomb interaction U, are calculated from first principles, using the GW approximation. We derive an expression for the frequency-dependent U and show that its high frequency part has significant influence on the spectral functions. We propose a scheme for taking into account the energy dependence of U, so that a model with an energy-independent local interaction can still be used for low-energy properties.Comment: 16 pages, 5 figure

    Empirical wind model for the middle and lower atmosphere. Part 1: Local time average

    Get PDF
    The HWM90 thermospheric wind model was revised in the lower thermosphere and extended into the mesosphere and lower atmosphere to provide a single analytic model for calculating zonal and meridional wind profiles representative of the climatological average for various geophysical conditions. Gradient winds from CIRA-86 plus rocket soundings, incoherent scatter radar, MF radar, and meteor radar provide the data base and are supplemented by previous data driven model summaries. Low-order spherical harmonics and Fourier series are used to describe the major variations throughout the atmosphere including latitude, annual, semiannual, and longitude (stationary wave 1). The model represents a smoothed compromise between the data sources. Although agreement between various data sources is generally good, some systematic differences are noted, particularly near the mesopause. Root mean square differences between data and model are on the order of 15 m/s in the mesosphere and 10 m/s in the stratosphere for zonal wind, and 10 m/s and 4 m/s, respectively, for meridional wind
    corecore