69 research outputs found

    Ionic liquid extraction unveils previously occluded humic-bound iron in peat soil pore water

    Get PDF
    Globally, peatland ecosystems store tremendous amounts of C relative to their extent on the landscape, largely owing to saturated soils which limit decomposition. While there is still considerable uncertainty regarding CO2 production potential below the water table in peatland ecosystems, extracellular Fe reduction has been suggested as a dominant pathway for anaerobic metabolism. However, colorimetric methods commonly used to quantitate Fe and partition between redox species are known to be unreliable in the presence of complex humic substances, which are common in peatland pore water. We evaluated both the standard o-phenanthroline (o-P) Method and an ionic liquid extraction (ILE) Method followed by quantitation with inductively coupled plasma optical emission spectrometry (ICP–OES) to compare total Fe recovery and Fe2+/Fe3+ ratios in four distinct peatland ecosystems, ranging from rich fen to bog. While total Fe concentrations measured with ILE and o-P were correlated, the ILE method proved to be superior in both total Fe quantitation and in separately quantifying ferric (Fe3+) and ferrous (Fe2+) iron. In peat pore water, the o-P Method underestimated Fe3+ by as much as 100%. A multivariate approach utilizing fluorescence- and ultraviolet (UV)–visable (Vis) spectroscopy identified indices of dissolved organic matter (DOM) humification and redox status that correlated with poor performance of the o-P Method in peat pore water. Where these interferences are present, we suggest that site-specific empirical correction factors for quantitation of total Fe by o-P can be created from ILE of Fe, but recommend ILE for accurate appraisals of iron speciation and redox processes

    Characterization of a major refractory component of marine dissolved organic matter.

    No full text
    Abstract Refractory carboxyl-rich alicyclic molecules (CRAM) are characterized in marine dissolved organic matter (DOM) using nuclear magnetic resonance spectroscopy and ultrahigh resolution mass spectrometry. CRAM are distributed throughout the water column and are the most abundant components of deep ocean DOM ever characterized. CRAM are comprised of a complex mixture of carboxylated and fused alicyclic structures with a carboxyl-C:aliphatic-C ratio of 1:2 to 1:7. CRAM are expected to constitute a strong ligand for metal binding, and multiple coordination across cations could promote aggregation and marine gel formation thereby affecting CRAM reactivity and the bioavailability of nutrients and trace metals. It appears CRAM are ultimately derived from biomolecules with structural similarities to sterols and hopanoids. The occurrence of CRAM in freshwater and terrestrial environments seems likely, considering the global distribution of biomolecules and the similarities of biogeochemical processes among environments
    corecore