24 research outputs found

    Feasibility of using scent-baited hair traps to monitor carnivore populations in Peninsular Malaysia

    Get PDF
    Non-invasive genetic sampling is increasingly being used for monitoring mammalian carnivore populations. However, environmental conditions in the tropics challenge researchers' ability to collect samples. We present the results of a preliminary study on the feasibility of using scent-baited hair traps for population monitoring of mammalian carnivores in Peninsular Malaysia. Stations were baited using either fatty acid scent or male cologne applied to hair traps. Video camera traps were also used to monitor carnivore reactions to the scent stations. We recorded 19 visits by seven carnivore species over 764 camera trap nights. Cheek-rubbing and scent-marking behaviour was recorded only for single individuals of two species: the Malayan tiger (Panthera tigris jacksoni) and clouded leopard (Neofelis nebulosa). This study suggests that scent-baited hair traps hold some promise for ecological issues requiring DNA analysis in Peninsular Malaysia. Additional research is needed to develop its full potential for conservation monitoring of large carnivores

    Predicting biodiversity richness in rapidly changing landscapes: climate, low human pressure or protection as salvation?

    Get PDF
    Rates of biodiversity loss in Southeast Asia are among the highest in the world, and the Indo-Burma and South-Central China Biodiversity Hotspots rank among the world’s most threatened. Developing robust multi-species conservation models is critical for stemming biodiversity loss both here and globally. We used a large and geographically extensive remote-camera survey and multi-scale, multivariate optimization species distribution modelling to investigate the factors driving biodiversity across these two adjoining biodiversity hotspots. Four major findings emerged from the work. (i) We identified clear spatial patterns of species richness, with two main biodiverse centres in the Thai-Malay Peninsula and in the mountainous region of Southwest China. (ii) Carnivores in particular, and large ungulates to a lesser degree, were the strongest indicators of species richness. (iii) Climate had the largest effect on biodiversity, followed by protected status and human footprint. (iv) Gap analysis between the biodiversity model and the current system of protected areas revealed that the majority of areas supporting the highest predicted biodiversity are not protected. Our results highlighted several key locations that should be prioritized for expanding the protected area network to maximize conservation effectiveness. We demonstrated the importance of switching from single-species to multi-species approaches to highlight areas of high priority for biodiversity conservation. In addition, since these areas mostly occur over multiple countries, we also advocate for a paradigmatic focus on transboundary conservation planning.The majority of the team, as well as the data, were part of the core WildCRU effort supported principally by a Robertson Foundation grant to DWM

    First record of a clouded leopard predating on a binturong

    No full text
    We present the first known record of a mainland clouded leopard Neofelis nebulosa predating on a Binturong Arctictis binturong. This finding provides valuable insight into the diet of this wildcat species, which has been known to predate on a wide variety of species across its range states

    Melanistic leopards reveal their spots: infrared camera traps provide a population density estimate of leopards in Malaysia

    No full text
    To date, leopards (Panthera pardus) in Peninsular Malaysia have been overlooked by large carnivore researchers. This is in part due to the country's unique population of individuals that are almost all melanistic, which makes it nearly impossible to identify individuals using camera traps for estimating leopard density. We discovered a novel modification to infrared flash camera traps, which forces the camera into night mode, that allows us to consistently and clearly see the spots of a melanistic leopard. The aim of this project was 1) to determine the feasibility of identifying melanistic leopards with confidence using infrared flash camera traps, and 2) to establish a density estimate for the leopard population in a wildlife corridor in Malaysia using maximum likelihood and Bayesian spatially explicit capture-recapture (SECR) models. Both SECR approaches yielded a leopard density of approximately 3 individuals/100 km2. Our estimates represent the first density estimate of leopards in Malaysia and arguably, the world's first successful attempt to estimate the population size of a species with melanistic phenotypes. Because we have demonstrated that melanistic leopards can be monitored with confidence using infrared cameras, future studies should employ our approach instead of relying on scars or body shape for identification. Ultimately, our approach can facilitate more accurate assessments of leopard population trends, particularly in regions where melanistic phenotypes largely occur
    corecore