35 research outputs found

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Biotelemetry informing management: Case studies exploring successful integration of biotelemetry data into fisheries and habitat management

    No full text
    Biotelemetry data have been successfully incorporated into aspects of fishery and fish habitat management; however, the processes of knowledge mobilization are rarely published in peer-reviewed literature but are valuable and of interest to conservation scientists. Here, we explore case examples from the Ocean Tracking Network (OTN), including Pacific salmon (Oncorhynchus spp.) in British Columbia, Canada; Greenland halibut (Reinhardtius hippoglossoides) in Cumberland Sound, Canada; and lemon sharks (Negaprion brevirostris) in Florida, USA, to document key processes for science integration. Typical recommendations documented in the literature (e.g., co-production of knowledge, transdisciplinary methodologies, applied research questions) were recorded to have had successful fisheries management integration, although we documented some exceptions. In each case, it was early, active, and ongoing communication outside of traditional science communication and the visual evidence of fish movement that were critical in engaging all parties with a vested interest. Networks offer forums for knowledge sharing on lessons learned and development of skills to engage in active communication. Greater investments and attention to develop these skills are needed to foster positive and active relationships that can impart real change in management and conservation

    Who suffers more from job insecurity? A Meta-Analytic review

    No full text
    The present meta-analysis examined the tenure, age, and gender differences in the relationship between job insecurity and its job-related and health-related consequences. A total of 133 studies, providing 172 independent samples, were included in the analysis. Our results basically replicated Sverke et al.'s (2002) meta-analytic findings with an updated methodological approach and a larger database. The main differences between our findings and Sverke et al.'s are that the negative association between job insecurity and job performance was significant and that the relationship between insecurity and job involvement was smaller in our study. The moderator analysis also indicated that: (1) the positive association between job insecurity and turnover intention was stronger among employees with shorter tenure than those with longer tenure, and was stronger among younger than older employees; (2) the negative effect of insecurity on its health outcomes was more severe among employees with longer tenure than those with shorter tenure, and was more severe among older than younger employees; (3) the relationship between insecurity and the criterion variables was similar across gender. Results are discussed with reference to Hulin's (1991) theory of job adaptation and Greenhalgh and Rosenblatt's (1984) job dependence perspective

    Recoil imaging for dark matter, neutrinos, and physics beyond the Standard Model

    No full text
    Recoil imaging entails the detection of spatially resolved ionization tracks generated by particle interactions. This is a highly sought-after capability in many classes of detector, with broad applications across particle and astroparticle physics. However, at low energies, where ionization signatures are small in size, recoil imaging only seems to be a practical goal for micro-pattern gas detectors. This white paper outlines the physics case for recoil imaging, and puts forward a decadal plan to advance towards the directional detection of low-energy recoils with sensitivity and resolution close to fundamental performance limits. The science case covered includes: the discovery of dark matter into the neutrino fog, directional detection of sub-MeV solar neutrinos, the precision study of coherent-elastic neutrino-nucleus scattering, the detection of solar axions, the measurement of the Migdal effect, X-ray polarimetry, and several other applied physics goals. We also outline the R&D programs necessary to test concepts that are crucial to advance detector performance towards their fundamental limit: single primary electron sensitivity with full 3D spatial resolution at the \sim100 micron-scale. These advancements include: the use of negative ion drift, electron counting with high-definition electronic readout, time projection chambers with optical readout, and the possibility for nuclear recoil tracking in high-density gases such as argon. We also discuss the readout and electronics systems needed to scale-up such detectors to the ton-scale and beyond
    corecore