19 research outputs found

    What Can We Infer About the Atmospheric Composition Within the South Coast Air Basin from Remote Sensing?

    Get PDF
    To observe a change in a gas (e.g., CO2) flux from an area, the change must exceed the error of the flux estimate. Changing bias could be misinterpreted as a change in flux, and should be avoided. Errors can arise in column CO2 (XCO2) retrievals, in mis-interpreting XCO2 variations, or in the models to estimate fluxes. My thesis work has focused on recognizing and quantifying these errors and biases. The most widely-used ground-based observations of XCO2 are from the Total Carbon Column Observing Network (TCCON), which uses observations from similar spectrometers at high (0.02 cm-1) resolution. Within the past 5 years there has been increased use of portable, lower resolution (0.5 cm-1) spectrometers for focused, short-term campaigns. This thesis discusses sources of errors and biases in retrievals from these lower resolution spectrometers. Previous error estimates for the TCCON were made by propagating various perturbations through the retrieval. These uncertainty estimates were about 0.2 % for CO2 and 0.4 % for CH4. A pair of portable 0.5 cm-1 resolution spectrometers were used to empirically diagnose the magnitude of bias among TCCON sites. Median estimates were about 0.1 %. Column measurements have increased in popularity within the last 15 years because of their reduced sensitivity to the dry mole fractions (DMF) of gases near the surface. However, in the presence of a sharp gradient between the atmospheric mixed layer (ML) and free troposphere rapid changes in terrain may cause the ML height above ground level and XCO2 to vary significantly over a small area. This explains ~20-36 % of the difference in XCO2 between 2 sites (Caltech and JPL) within 10 km of each other in the South Coast Air Basin (SoCAB). Dynamical models may have biases (e.g., in wind speed) compared to true atmospheric behavior. This may cause biases in flux estimates. An estimate of the SoCAB CO2 flux using readily available model data is higher than those reported by bottom-up methods, perhaps due to a high wind speed bias. The flux is also sensitive to sub-sampling, which highlights the need to filter out biased data and the benefits additional observations could provide. Carbon dioxide is not the only radiative forcer---aerosols are the largest source of uncertainty on the global radiative forcing budget, and additional measurements may better constrain their impacts. Estimate of changes in aerosol optical depth (AOD) can be made using portable spectrometers. While these estimates are not highly accurate, they are a value-added product and may increase the understanding of atmospheric behavior.</p

    Assessment of errors and biases in retrievals of X_(CO2), X_(CH4), X_(CO), and X_(N2O) from a 0.5 cm^(-1) resolution solar-viewing spectrometer

    Get PDF
    Bruker™ EM27/SUN instruments are commercial mobile solar-viewing near-IR spectrometers. They show promise for expanding the global density of atmospheric column measurements of greenhouse gases and are being marketed for such applications. They have been shown to measure the same variations of atmospheric gases within a day as the high-resolution spectrometers of the Total Carbon Column Observing Network (TCCON). However, there is little known about the long-term precision and uncertainty budgets of EM27/SUN measurements. In this study, which includes a comparison of 186 measurement days spanning 11 months, we note that atmospheric variations of X_(gas) within a single day are well captured by these low-resolution instruments, but over several months, the measurements drift noticeably. We present comparisons between EM27/SUN instruments and the TCCON using GGG as the retrieval algorithm. In addition, we perform several tests to evaluate the robustness of the performance and determine the largest sources of errors from these spectrometers. We include comparisons of X_(CO2), X_(CH4), X_(CO), and X_(N2)O. Specifically we note EM27/SUN biases for January 2015 of 0.03, 0.75, –0.12, and 2.43 % for X_(CO2), X_(CH4), X_(CO), and X_(N2)O respectively, with 1σ running precisions of 0.08 and 0.06 % for X_(CO2) and X_(CH4) from measurements in Pasadena. We also identify significant error caused by nonlinear sensitivity when using an extended spectral range detector used to measure CO and N_2O

    Quantifying the loss of processed natural gas within California's South Coast Air Basin using long-term measurements of ethane and methane

    Get PDF
    Methane emissions inventories for Southern California's South Coast Air Basin (SoCAB) have underestimated emissions from atmospheric measurements. To provide insight into the sources of the discrepancy, we analyze records of atmospheric trace gas total column abundances in the SoCAB starting in the late 1980s to produce annual estimates of the ethane emissions from 1989 to 2015 and methane emissions from 2007 to 2015. The first decade of measurements shows a rapid decline in ethane emissions coincident with decreasing natural gas and crude oil production in the basin. Between 2010 and 2015, however, ethane emissions have grown gradually from about 13 ± 5 to about 23 ± 3 Gg yr⁻¹, despite the steady production of natural gas and oil over that time period. The methane emissions record begins with 1 year of measurements in 2007 and continuous measurements from 2011 to 2016 and shows little trend over time, with an average emission rate of 413 ± 86 Gg yr⁻¹. Since 2012, ethane to methane ratios in the natural gas withdrawn from a storage facility within the SoCAB have been increasing by 0.62 ± 0.05 % yr⁻¹, consistent with the ratios measured in the delivered gas. Our atmospheric measurements also show an increase in these ratios but with a slope of 0.36 ± 0.08 % yr⁻¹, or 58 ± 13 % of the slope calculated from the withdrawn gas. From this, we infer that more than half of the excess methane in the SoCAB between 2012 and 2015 is attributable to losses from the natural gas infrastructure

    Intercomparability of X_(CO_2) and X_(CH_4) from the United States TCCON sites

    Get PDF
    The Total Carbon Column Observing Network (TCCON) has become the standard for long-term column-averaged measurements of CO_2 and CH_4. Here, we use a pair of portable spectrometers to test for intra-network bias among the four currently operating TCCON sites in the United States (US). A previous analytical error analysis has suggested that the maximum 2σ site-to-site relative (absolute) bias of TCCON should be less than 0.2% (0.8ppm) in X_(CO_2) and 0.4% (7ppb) in X_(CH_4). We find here experimentally that the 95% confidence intervals for maximum pairwise site-to-site bias among the four US TCCON sites are 0.05–0.14% for X_(CO_2) and 0.08–0.24% for X_(CH_4). This is close to the limit of the bias we can detect using this methodology

    Emissions and topographic effects on column CO_2 (XCO_2) variations, with a focus on the Southern California Megacity

    Get PDF
    Within the California South Coast Air Basin (SoCAB), X_(CO)_2 varies significantly due to atmospheric dynamics and the nonuniform distribution of sources. X_(CO)_2 measurements within the basin have seasonal variation compared to the “background” due primarily to dynamics, or the origins of air masses coming into the basin. We observe basin-background differences that are in close agreement for three observing systems: Total Carbon Column Observing Network (TCCON) 2.3 ± 1.2 ppm, Orbiting Carbon Observatory-2 (OCO-2) 2.4 ± 1.5 ppm, and Greenhouse gases Observing Satellite 2.4 ± 1.6 ppm (errors are 1σ). We further observe persistent significant differences (∼0.9 ppm) in X_(CO)_2 between two TCCON sites located only 9 km apart within the SoCAB. We estimate that 20% (±1σ confidence interval (CI): 0%, 58%) of the variance is explained by a difference in elevation using a full physics and emissions model and 36% (±1σ CI: 10%, 101%) using a simple, fixed mixed layer model. This effect arises in the presence of a sharp gradient in any species (here we focus on CO_2) between the mixed layer (ML) and free troposphere. Column differences between nearby locations arise when the change in elevation is greater than the change in ML height. This affects the fraction of atmosphere that is in the ML above each site. We show that such topographic effects produce significant variation in X_(CO)_2 across the SoCAB as well

    Emissions and topographic effects on column CO2 (XCO2) variations, with a focus on the Southern California Megacity

    Full text link
    Within the California South Coast Air Basin (SoCAB), XCO2 varies significantly due to atmospheric dynamics and the nonuniform distribution of sources. XCO2 measurements within the basin have seasonal variation compared to the “background” due primarily to dynamics, or the origins of air masses coming into the basin. We observe basin‐background differences that are in close agreement for three observing systems: Total Carbon Column Observing Network (TCCON) 2.3 ± 1.2 ppm, Orbiting Carbon Observatory‐2 (OCO‐2) 2.4 ± 1.5 ppm, and Greenhouse gases Observing Satellite 2.4 ± 1.6 ppm (errors are 1σ). We further observe persistent significant differences (∼0.9 ppm) in XCO2 between two TCCON sites located only 9 km apart within the SoCAB. We estimate that 20% (±1σ confidence interval (CI): 0%, 58%) of the variance is explained by a difference in elevation using a full physics and emissions model and 36% (±1σ CI: 10%, 101%) using a simple, fixed mixed layer model. This effect arises in the presence of a sharp gradient in any species (here we focus on CO2) between the mixed layer (ML) and free troposphere. Column differences between nearby locations arise when the change in elevation is greater than the change in ML height. This affects the fraction of atmosphere that is in the ML above each site. We show that such topographic effects produce significant variation in XCO2 across the SoCAB as well.Plain Language SummaryCities persistently have elevated carbon dioxide (CO2) levels as compared to surrounding regions. Within a city CO2 levels can also vary significantly at different locations for reasons such as more CO2 being emitted in some parts than others. Elevated column CO2 levels in the South Coast Air Basin (SoCAB) are in agreement for three observation systems (two satellite and one ground‐based) systems and vary with regional wind patterns throughout the year. In Pasadena, California, within the SoCAB, a significant fraction (about 25%) of variation in the column‐averaged CO2 can be explained by differences in surface altitude. This is important to understand so that all variations in column CO2 within an urban region are not mistakenly interpreted as being from CO2 surface fluxes.Key PointsIn the SoCAB, 20–36% of spatial variance in XCO2 is explained by topography on scales ≲10 kmIn Pasadena, XCO2 is enhanced by 2.3 ± 1.2 (1σ) ppm above background levels, at 1300 (UTC 8) with seasonal variationThe SoCAB XCO2 enhancement is in agreement for 3 different observation sets (TCCON, GOSAT, and OCO‐2)Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137737/1/jgrd53887.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137737/2/jgrd53887_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137737/3/jgrd53887-sup-0001-supinfo.pd

    Differential column measurements using compact solar-tracking spectrometers

    Get PDF
    We demonstrate the use of compact solar-tracking Fourier transform spectrometers (Bruker EM27/SUN) for differential measurements of the column-averaged dry-air mole fractions of CH_4 and CO_2 within urban areas. Using Allan variance analysis, we show that the differential column measurement has a precision of 0.01 % for X_(CO_2) and X_(CH_4) with an optimum integration time of 10 min, corresponding to Allan deviations of 0.04 ppm and 0.2 ppb,respectively. The sensor system is very stable over time and after relocation across the continent. We report tests of the differential column measurement,and its sensitivity to emission sources, by measuring the downwind-minus-upwind column difference ΔX_(CH_4) across dairy farms in the Chino area, California, and using the data to verify emissions reported in the literature. Ratios of spatial column differences ΔX_(CH_4)∕ΔX_(CO_2) were observed across Pasadena within the Los Angeles basin, indicating values consistent with regional emission ratios from the literature. Our precise, rapid measurements allow us to determine significant short-term variations (5–10 min) of X_(CO_2) and X_(CH_4) and to show that they represent atmospheric phenomena. Overall, this study helps establish a range of new applicationsfor compact solar-viewing Fourier transform spectrometers. Byaccurately measuring the small differences in integrated column amounts acrosslocal and regional sources, we directly observe the mass loadingof the atmosphere due to the influence of emissions in theintervening locale. The inference of the source strength is muchmore direct than inversion modeling using only surface concentrationsand less subject to errors associated with small-scale transportphenomena
    corecore