824 research outputs found

    Does tiny-scale atomic structure exist in the interstellar medium ?

    Full text link
    We report on preliminary results from the recent multi-epoch neutral hydrogen absorption measurements toward three pulsars, B0823+26, B1133+16 and B2016+28, using the Arecibo telescope. We do not find significant variations in optical depth profiles over periods of 0.3 and 9--10 yr, or on spatial scales of 10--20 and 70--85 AU. The large number of non detections of the tiny scale atomic structure suggests that the AU-sized structure is not ubiquitous in the interstellar medium and could be quite a rare phenomenon.Comment: Accepted by ApJ Letters, 5 pages, 2 figure

    The zero-dimensional O(N) vector model as a benchmark for perturbation theory, the large-N expansion and the functional renormalization group

    Full text link
    We consider the zero-dimensional O(N) vector model as a simple example to calculate n-point correlation functions using perturbation theory, the large-N expansion, and the functional renormalization group (FRG). Comparing our findings with exact results, we show that perturbation theory breaks down for moderate interactions for all N, as one should expect. While the interaction-induced shift of the free energy and the self-energy are well described by the large-N expansion even for small N, this is not the case for higher-order correlation functions. However, using the FRG in its one-particle irreducible formalism, we see that very few running couplings suffice to get accurate results for arbitrary N in the strong coupling regime, outperforming the large-N expansion for small N. We further remark on how the derivative expansion, a well-known approximation strategy for the FRG, reduces to an exact method for the zero-dimensional O(N) vector model.Comment: 13 pages, 13 figure

    Arecibo HI Absorption Measurements of Pulsars and the Electron Density at Intermediate Longitudes in the First Galactic Quadrant

    Get PDF
    We have used the Arecibo telescope to measure the HI absorption spectra of eight pulsars. We show how kinematic distance measurements depend upon the values of the galactic constants R_o and Theta_o, and we select our preferred current values from the literature. We then derive kinematic distances for the low-latitude pulsars in our sample and electron densities along their lines of sight. We combine these measurements with all others in the inner galactic plane visible from Arecibo to study the electron density in this region. The electron density in the interarm range 48 degrees < l < 70 degrees is [0.017 (-0.007,+0.012) (68% c.l.)] cm^(-3). This is 0.75 (-0.22,+0.49) (68% c.l.) of the value calculated by the Cordes & Lazio (2002) galactic electron density model. The model agrees more closely with electron density measurements toward Arecibo pulsars lying closer to the galactic center, at 30 degrees<l<48 degrees. Our analysis leads to the best current estimate of the distance of the relativistic binary pulsar B1913+16: d=(9.0 +/- 3) kpc. We use the high-latitude pulsars to search for small-scale structure in the interstellar hydrogen observed in absorption over multiple epochs. PSR B0301+19 exhibited significant changes in its absorption spectrum over 22 yr, indicating HI structure on a ~500 AU scale.Comment: Accepted by Astrophysical Journal September 200

    Detection of OH absorption against PSR B1849+00

    Full text link
    We have searched for OH absorption against seven pulsars using the Arecibo telescope. In both OH mainlines (at 1665 and 1667 MHz), deep and narrow absorption features were detected toward PSR B1849+00. In addition, we have detected several absorption and emission features against B33.6+0.1, a nearby supernova remnant (SNR). The most interesting result of this study is that a pencil-sharp absorption sample against the PSR differs greatly from the large-angle absorption sample observed against the SNR. If both the PSR and the SNR probe the same molecular cloud then this finding has important implications for absorption studies of the molecular medium, as it shows that the statistics of absorbing OH depends on the size of the background source. We also show that the OH absorption against the PSR most likely originates from a small (<30 arcsec) and dense (>10^5 cm^-3) molecular clump.Comment: 12 pages, 8 figures. Accepted for publication in Ap

    Khovanov homology is an unknot-detector

    Get PDF
    We prove that a knot is the unknot if and only if its reduced Khovanov cohomology has rank 1. The proof has two steps. We show first that there is a spectral sequence beginning with the reduced Khovanov cohomology and abutting to a knot homology defined using singular instantons. We then show that the latter homology is isomorphic to the instanton Floer homology of the sutured knot complement: an invariant that is already known to detect the unknot.Comment: 124 pages, 13 figure

    Modelo computacional para suporte à decisão em áreas irrigadas. Parte II. Testes e aplicação.

    Get PDF
    Apresentou-se, na Parte I desta pesquisa, o desenvolvimento de um modelo computacional denominado MCID, para suporte à tomada de decisão quanto ao planejamento e manejo de projetos de irrigação e/ou drenagem. Objetivou-se, na Parte II, testar e aplicar o MCID. No teste comparativo com o programa DRAINMOD, espaçamentos entre drenos, obtidos com o MCID, foram ligeiramente maiores ou idênticos. Os espaçamentos advindos com o MCID e o DRAINMOD foram consideravelmente maiores que os obtidos por meio de metodologias tradicionais de dimensionamento de sistemas de drenagem. A produtividade relativa total, YRT, obtida com o MCID foi, em geral, inferior à conseguida com o DRAINMOD, devido a diferenças de metodologia ao se estimar a produtividade da cultura em resposta ao déficit hídrico. Na comparação com o programa CRO-PWAT, obtiveram-se resultados muito próximos para (YRT) e evapotranspiração real. O modelo desenvolvido foi aplicado para as condições do Projeto Jaíba, MG, para culturas perenes e anuais cultivadas em diferentes épocas. Os resultados dos testes e aplicações indicaram a potencialidade do MClD como ferramenta de apoio à decisão em projetos de irrigação e/ou drenagem

    The early inflorescence of Arabidopsis thaliana demonstrates positional effects in floral organ growth and meristem patterning.

    Get PDF
    Linear modelling approaches detected significant gradients in organ growth and patterning across early flowers of the Arabidopsis inflorescence and uncovered evidence of new roles for gibberellin in floral development. Most flowering plants, including the genetic model Arabidopsis thaliana, produce multiple flowers in sequence from a reproductive shoot apex to form a flower spike (inflorescence). The development of individual flowers on an Arabidopsis inflorescence has typically been considered as highly stereotypical and uniform, but this assumption is contradicted by the existence of mutants with phenotypes visible in early flowers only. This phenomenon is demonstrated by mutants partially impaired in the biosynthesis of the phytohormone gibberellin (GA), in which floral organ growth is retarded in the first flowers to be produced but has recovered spontaneously by the 10th flower. We presently lack systematic data from multiple flowers across the Arabidopsis inflorescence to explain such changes. Using mutants of the GA 20-OXIDASE (GA20ox) GA biosynthesis gene family to manipulate endogenous GA levels, we investigated the dynamics of changing floral organ growth across the early Arabidopsis inflorescence (flowers 1-10). Modelling of floral organ lengths identified a significant, GA-independent gradient of increasing stamen length relative to the pistil in the wild-type inflorescence that was separable from other, GA-dependent effects. It was also found that the first flowers exhibited unstable organ patterning in contrast to later flowers and that this instability was prolonged by exogenous GA treatment. These findings indicate that the development of individual flowers is influenced by hitherto unknown factors acting across the inflorescence and also suggest novel functions for GA in floral patterning

    Computational modeling for irrigated agriculture planning. Part I: general description and linear programming.

    Get PDF
    Linear programming models are effective tools to support initial or periodic planning of agricultural enterprises, requiring, however, technical coefficients that can be determined using computer simulation models. This paper, presented in two parts, deals with the development, application and tests of a methodology and of a computational modeling tool to support planning of irrigated agriculture activities. Part I aimed at the development and application, including sensitivity analysis, of a multiyear linear programming model to optimize the financial return and water use, at farm level for Jaíba irrigation scheme, Minas Gerais State, Brazil, using data on crop irrigation requirement and yield, obtained from previous simulation with MCID model. The linear programming model outputted a crop pattern to which a maximum total net present value of R372,723.00forthefouryearsperiod,wasobtained.Constraintsonmonthlywateravailability,labor,landandproductionwerecriticalintheoptimalsolution.Inrelationtothewateruseoptimization,itwasverifiedthatanexpressivereductionsontheirrigationrequirementsmaybeachievedbysmallreductionsonthemaximumtotalnetpresentvalue.Modelosdeprogramac\ca~olinearsa~oferramentaseficazesdesuporteaoplanejamentoinicialouperioˊdicodeempreendimentosagrıˊcolas,requerendo,todavia,coeficientesteˊcnicosquepodemserobtidospormodeloscomputacionaisdesimulac\ca~o.Estetrabalho,divididoemduaspartes,abordaodesenvolvimento,aaplicac\ca~oeostestesdemetodologiaedamodelagemcomputacionaldeumaferramentadeauxıˊlioaoplanejamentodaexplorac\ca~oagrıˊcolairrigada.Teveseoobjetivodedesenvolvereaplicar,comanaˊlisedesensibilidade,ummodelodeprogramac\ca~olinearplurianualparaotimizac\ca~odoretomofinanceiroeusodaaˊgua,emniveldepropriedaderuralnoperıˊmetrodeirrigac\ca~odoJaıˊbaMG,utilizandodadosderequerimentodeirrigac\ca~oeprodutividadedeculturas,obtidoscomomodelodesimulac\ca~oMCIO.Omodelodeprogramac\ca~olinearindicouumpadra~odecultivoparaoqualseobteveomaˊximovalorpresenteliquidototal,deR 372,723.00 for the four years period, was obtained. Constraints on monthly water availability, labor, land and production were critical in the optimal solution. In relation to the water use optimization, it was verified that an expressive reductions on the irrigation requirements may be achieved by small reductions on the maximum total net present value. Modelos de programação linear são ferramentas eficazes de suporte ao planejamento inicial ou periódico de empreendimentos agrícolas, requerendo, todavia, coeficientes técnicos que podem ser obtidos por modelos computacionais de simulação. Este trabalho, dividido em duas partes, aborda o desenvolvimento, a aplicação e os testes de metodologia e da modelagem computacional de uma ferramenta de auxílio ao planejamento da exploração agrícola irrigada. Teve-se o objetivo de desenvolver e aplicar, com análise de sensibilidade, um modelo de programação linear plurianual para otimização do retomo financeiro e uso da água, em nivel de propriedade rural no perímetro de irrigação do Jaíba - MG, utilizando dados de requerimento de irrigação e produtividade de culturas, obtidos com o modelo de simulação MCIO. O modelo de programação linear indicou um padrão de cultivo para o qual se obteve o máximo valor presente liquido total, de R 372.723,00 para o período de quatro anos. Restrições quanto à disponibilidade mensal de água, mão-de-obra, terra e produção foram críticas na solução ótima. Em relação à otimização de uso da água, verificou-se que expressivas reduções no requerimento de irrigação podem ser obtidas com pequenas reduções no valor presente líquido total máximo

    A finite-frequency functional RG approach to the single impurity Anderson model

    Full text link
    We use the Matsubara functional renormalization group (FRG) to describe electronic correlations within the single impurity Anderson model. In contrast to standard FRG calculations, we account for the frequency-dependence of the two-particle vertex in order to address finite-energy properties (e.g, spectral functions). By comparing with data obtained from the numerical renormalization group (NRG) framework, the FRG approximation is shown to work well for arbitrary parameters (particularly finite temperatures) provided that the electron-electron interaction U is not too large. We demonstrate that aspects of (large U) Kondo physics which are described well by a simpler frequency-independent truncation scheme are no longer captured by the 'higher-order' frequency-dependent approximation. In contrast, at small to intermediate U the results obtained by the more elaborate scheme agree better with NRG data. We suggest to parametrize the two-particle vertex not by three independent energy variables but by introducing three functions each of a single frequency. This considerably reduces the numerical effort to integrate the FRG flow equations.Comment: accepted by J. Phys.: Condensed Matte
    corecore