17 research outputs found

    Transcriptional repression of the glycoprotein hormone alpha subunit gene by androgen may involve direct binding of androgen receptor to the proximal promoter.

    Get PDF
    Testicular androgens suppress the synthesis and secretion of the pituitary gonadotropins, in particular, luteinizing hormone. This suppressive effect includes transcription of both the common a subunit gene and the unique β subunit genes. Herein, we demonstrate that 1600 base pairs (bp) of proximal 5'-flanking region derived from the human α subunit gene and a shorter 315-bp segment of the bovine α subunit gene confer negative regulation by androgen to the gene encoding bacterial chloramphenicol acetyltransferase in transgenic mice.Testicular androgens suppress the synthesis and secretion of the pituitary gonadotropins, in particular, luteinizing hormone. This suppressive effect includes transcription of both the common a subunit gene and the unique β subunit genes. Herein, we demonstrate that 1600 base pairs (bp) of proximal 5'-flanking region derived from the human α subunit gene and a shorter 315-bp segment of the bovine α subunit gene confer negative regulation by androgen to the gene encoding bacterial chloramphenicol acetyltransferase in transgenic mice

    The Expression of the Follicle-stimulating Hormone Receptor in Spermatogenesis

    No full text
    Results from experiments using mouse models suggest that the role of follicle-stimulating hormone (FSH) in spermatogenesis is the regulation of Sertoli cell proliferation and, ultimately, the size and spermatogenic capacity of the testis. The regulation of the expression of the FSH receptor (FSHR) gene is very cell specific and plays an initial role in the ultimate response of the Sertoli cells to FSH. The extreme cell specificity and the importance of the FSH response to spermatogenesis have led to an extensive characterization of the promoter of the FSHR gene. Several widely expressed transcription factors – including USF 1 and 2, GATA-1, and SF-1 and potential elements such as an E2F site and an Inr region – have been shown to contribute to the maximal transcription of the transfected FSHR gene. However, these experiments have failed to provide clues as to the cell-specific expression of the FSHR gene. In both cell transfections and in transgenic mice, the promoter can direct expression of transgenes promiscuously. The rodent FSHR promoter contains conserved CpG dinucleotides that were shown to be methylated in nonexpressing cells and tissue but unmethylated in Sertoli cells. The methylated CpG sites could interfere with the binding of general transcription factors and/or lead to a repressive chromatin structure in the nonexpressing cells. While yet-undiscovered cell-specific factors may play a role in the expression of the FSHR gene, repression and activation of local chromatin structure are likely to be involved

    Sp1 and Egr1 Regulate Transcription of the Dmrt1 Gene in Sertoli Cells1

    No full text

    Silencing of Fshr

    No full text

    Gata4 Regulates Testis Expression of Dmrt1

    No full text
    The doublesex and mab-3 related transcription factor 1 (Dmrt1) is a putative transcriptional regulator that is expressed exclusively in the gonads and is required for postnatal testis differentiation. Here we describe the transcriptional mechanisms regulating testis-specific expression of the Dmrt1 gene. Transient-transfection analysis identified a region of the promoter between kb −3.2 and −2.8 that is important for Sertoli cell-specific expression. DNase I footprinting revealed four sites of DNA-protein interaction within this region, three of which were prominent in primary Sertoli cells. Analysis of these sites, using electrophoretic mobility shift assays, revealed that Gata4 and another unknown factor bound within these regions. Further transient-transfection assays of various mutant promoters established the functional relevance of the Gata4-response and unknown factor-response elements, while studies of Dmrt1 expression in 13.5 days postcoitum Fog2 null gonads supported the in vivo importance of Gata4's regulation. As a whole, these studies identify Gata4 as an important regulator in the Dmrt1 transcriptional machinery that is responsible for robust expression of Dmrt1 in the testis

    Distinct Transcriptional Mechanisms Direct Expression of the Rat Dmrt1 Promoter in Sertoli Cells and Germ Cells of Transgenic Mice1

    No full text
    DMRT1 is a transcription factor expressed only in Sertoli cells and undifferentiated spermatogonia of the postnatal testis, where it is required for proper cellular differentiation and fertility. To elucidate the transcriptional regulatory regions that provide DMRT1's cell-specific expression, transgenic mice containing a LacZ reporter gene driven by variable amounts of rat Dmrt1 5′ flanking sequence, 9 kb and smaller, were evaluated. Examination of transgene expression by RT-PCR indicated that multiple promoter regions direct Dmrt1 to the testis and that sequences upstream of 2.8 kb are needed for both Sertoli cell expression and limiting transcriptional influence imposed by surrounding chromatin. Thus, whereas many of the transgenes were expressed in the testis, the ones with smaller promoters were significantly more prone to expression at ectopic sites or to complete silencing. Transgene expression in Sertoli cells and germ cells was assessed by immunohistochemistry and RT-PCR following busulfan treatment to remove germ cells. Both evaluations indicated expression of the 9- and 3.2-kb promoters in Sertoli cells and germ cells, whereas activity of smaller promoters was largely restricted to germ cells. In all, the present study provides in vivo evidence that distinct promoter sequences participate in Dmrt1 regulation in somatic cells and germ cells, with the −3.2 kb/−2.8 kb region directing expression in Sertoli cells and downstream sequences (≤1.3 kb) directing it in germ cells. Further exploration of the mechanisms restricting Dmrt1 expression to the testis revealed that FOXL2, a transcription factor required for differentiation of the ovary, repressed Dmrt1 promoter through the −3.2 kb/−2.8 kb regulatory region, offering a potential mechanism for Dmrt1 transcriptional silencing in granulosa cells

    In Vivo Regulation of Follicle-Stimulating Hormone Receptor by the Transcription Factors Upstream Stimulatory Factor 1 and Upstream Stimulatory Factor 2 Is Cell Specific

    No full text
    Pituitary FSH promotes pubertal timing and normal gametogenesis by binding its receptor (FSHR) located on Sertoli and granulosa cells of the testis and ovary, respectively. Studies on Fshr transcription provide substantial evidence that upstream stimulatory factor (USF) 1 and USF2, basic helix-loop-helix leucine zipper proteins, regulate Fshr through an E-box within its promoter. However, despite the strong in vitro support for USF1 and USF2 in Fshr regulation, there is currently no in vivo corroborating evidence. In the present study, chromatin immunoprecipitation demonstrated specific binding of USF1 and USF2 to the Fshr promoter in both Sertoli and granulosa cells, in vivo. Control cells lacking Fshr expression showed no USF-Fshr promoter binding, thus correlating USF-promoter binding to gene activity. Evaluation of Fshr expression in Usf1 and Usf2 null mice further explored USF’s role in Fshr transcription. Loss of either gene significantly reduced ovarian Fshr levels, whereas testis levels were unaltered. Chromatin immunoprecipitation analysis of USF-Fshr promoter binding in Usf-null mice indicated differences in the composition of promoter-bound USF dimers in granulosa and Sertoli cells. Promoter-bound USF dimer levels declined in granulosa cells from both null mice, despite increased USF2 levels in Usf1-null ovaries. However, compensatory increases in promoter-bound USF homodimers were evident in Usf-null Sertoli cells. In summary, this study provides the first in vivo evidence that USF1 and USF2 bind the Fshr promoter and revealed differences between Sertoli and granulosa cells in compensatory responses to USF loss and the USF dimeric composition required for Fshr transcription
    corecore