3,625 research outputs found

    Thermal infrared work at ITC:a personal, historic perspective of transitions

    Get PDF

    Dynamics of a cold trapped ion in a Bose-Einstein condensate

    Full text link
    We investigate the interaction of a laser-cooled trapped ion (Ba+^+ or Rb+^+) with an optically confined 87^{87}Rb Bose-Einstein condensate (BEC). The system features interesting dynamics of the ion and the atom cloud as determined by their collisions and their motion in their respective traps. Elastic as well as inelastic processes are observed and their respective cross sections are determined. We demonstrate that a single ion can be used to probe the density profile of an ultracold atom cloud.Comment: 4 pages, 5 figure

    Observation of the Pairing Gap in a Strongly Interacting Fermi Gas

    Full text link
    We study fermionic pairing in an ultracold two-component gas of 6^6Li atoms by observing an energy gap in the radio-frequency excitation spectra. With control of the two-body interactions via a Feshbach resonance we demonstrate the dependence of the pairing gap on coupling strength, temperature, and Fermi energy. The appearance of an energy gap with moderate evaporative cooling suggests that our full evaporation brings the strongly interacting system deep into a superfluid state.Comment: 18 pages, 3 figure

    Dynamics of a strongly interacting Fermi gas: the radial quadrupole mode

    Full text link
    We report on measurements of an elementary surface mode in an ultracold, strongly interacting Fermi gas of 6Li atoms. The radial quadrupole mode allows us to probe hydrodynamic behavior in the BEC-BCS crossover without being influenced by changes in the equation of state. We examine frequency and damping of this mode, along with its expansion dynamics. In the unitarity limit and on the BEC side of the resonance, the observed frequencies agree with standard hydrodynamic theory. However, on the BCS side of the crossover, a striking down shift of the oscillation frequency is observed in the hydrodynamic regime as a precursor to an abrupt transition to collisionless behavior; this indicates coupling of the oscillation to fermionic pairs.Comment: 11 pages, 11 figures v2: minor change

    Exploring the BEC-BCS Crossover with an Ultracold Gas of 6^6Li Atoms

    Full text link
    We present an overview of our recent measurements on the crossover from a Bose-Einstein condensate of molecules to a Bardeen-Cooper-Schrieffer superfluid. The experiments are performed on a two-component spin-mixture of 6^6Li atoms, where a Fesh\-bach resonance serves as the experimental key to tune the s-wave scattering length and thus to explore the various interaction regimes. In the BEC-BCS crossover, we have characterized the interaction energy by measuring the size of the trapped gas, we have studied collective excitation modes, and we have observed the pairing gap. Our observations provide strong evidence for superfluidity in the strongly interacting Fermi gas.Comment: Proceedings of ICAP-2004 (Rio de Janeiro). Review on Innsbruck BEC-BCS crossover experiments with updated Feshbach resonance positio

    Hyperfine, rotational and Zeeman structure of the lowest vibrational levels of the 87^{87}Rb2_2 \tripletex state

    Full text link
    We present the results of an experimental and theoretical study of the electronically excited \tripletex state of 87^{87}Rb2_2 molecules. The vibrational energies are measured for deeply bound states from the bottom up to v′=15v'=15 using laser spectroscopy of ultracold Rb2_2 Feshbach molecules. The spectrum of each vibrational state is dominated by a 47\,GHz splitting into a \cog and \clg component caused mainly by a strong second order spin-orbit interaction. Our spectroscopy fully resolves the rotational, hyperfine, and Zeeman structure of the spectrum. We are able to describe to first order this structure using a simplified effective Hamiltonian.Comment: 10 pages, 7 figures, 2 table
    • …
    corecore