2,164 research outputs found

    Graph transformation for verification and concurrency

    Get PDF
    The talk will begin with a brief introduction to Rewriting Logic and use of the Maude language. A case study based on modeling security aspects a remote service toolkit will be used to illustrate the approach to formal modeling and analysis in more detail

    Static and Dynamic Strength Properties of a Fiber-Reinforced Compacted Cohesive Soil

    Get PDF
    Soil reinforcement with randomly oriented, individual synthetic fibers has been applied to laboratory specimens of a compacted cohesive soil. Fiber contents of up to 1.0% by soil dry weight were mixed with the soil. Data from unconfined compression (static) testing and resilient modulus (dynamic) testing have been presented. Experimental work showed that the fibers increased the soil unconfined compressive strength, ductility, toughness, static and dynamic energy absorption capacities, the resilient strain and the number of cycles to failure. The soil resilient modulus and the permanent strain both decreased with the increase in fiber content

    Test of the isotropy of the speed of light using a continuously rotating optical resonator

    Full text link
    We report on a test of Lorentz invariance performed by comparing the resonance frequencies of one stationary optical resonator and one continuously rotating on a precision air bearing turntable. Special attention is paid to the control of rotation induced systematic effects. Within the photon sector of the Standard Model Extension, we obtain improved limits on combinations of 8 parameters at a level of a few parts in 101610^{-16}. For the previously least well known parameter we find κ~eZZ=(1.9±5.2)×1015\tilde \kappa_{e-}^{ZZ} =(-1.9 \pm 5.2)\times 10^{-15}. Within the Robertson-Mansouri-Sexl test theory, our measurement restricts the isotropy violation parameter βδ12\beta -\delta -\frac 12 to (2.1±1.9)×1010(-2.1\pm 1.9)\times 10^{-10}, corresponding to an eightfold improvement with respect to previous non-rotating measurements.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let

    New CP-violation and preferred-frame tests with polarized electrons

    Get PDF
    We used a torsion pendulum containing 9×1022\sim 9 \times 10^{22} polarized electrons to search for CP-violating interactions between the pendulum's electrons and unpolarized matter in the laboratory's surroundings or the sun, and to test for preferred-frame effects that would precess the electrons about a direction fixed in inertial space. We find gPegSN/(c)<1.7×1036|g_{\rm P}^e g_{\rm S}^N|/(\hbar c)< 1.7 \times 10^{-36} and gAegVN/(c)<4.8×1056|g_{\rm A}^e g_{\rm V}^N|/(\hbar c) < 4.8 \times 10^{-56} for λ>1\lambda > 1AU. Our preferred-frame constraints, interpreted in the Kosteleck\'y framework, set an upper limit on the parameter b~e5.0×1021|\bm{\tilde {b}}^e| \leq 5.0 \times 10^{-21} eV that should be compared to the benchmark value me2/MPlanck=2×1017m_e^2/M_{\rm Planck}= 2 \times 10^{-17} eV.Comment: 4 figures, accepted for publication in Physical Review Letter

    The Riemann-Cartan space in the O-theory

    Full text link
    Nonrelativistic equation of particle with a spin for the Lagrangian on a nonassociative algebra is obtained. It is shown that in this model arises Riemann-Cartan space. In the case of central symmetry in addition to the pseudo-curvature appears torsion as pseudovector that interacts with the spin of the particle. An estimation of the influence of torsion on the strength of gravitational attraction in the central gravitational field is given.Comment: 12 page

    Tests of the Gravitational Inverse-Square Law below the Dark-Energy Length Scale

    Get PDF
    We conducted three torsion-balance experiments to test the gravitational inverse-square law at separations between 9.53 mm and 55 micrometers, probing distances less than the dark-energy length scale λd=c/ρd485μ\lambda_{\rm d}=\sqrt[4]{\hbar c/\rho_{\rm d}}\approx 85 \mum. We find with 95% confidence that the inverse-square law holds (α1|\alpha| \leq 1) down to a length scale λ=56μ\lambda = 56 \mum and that an extra dimension must have a size R44μR \leq 44 \mum.Comment: 4 pages, 6 figure

    Spin-Dependent Macroscopic Forces from New Particle Exchange

    Get PDF
    Long-range forces between macroscopic objects are mediated by light particles that interact with the electrons or nucleons, and include spin-dependent static components as well as spin- and velocity-dependent components. We parametrize the long-range potential between two fermions assuming rotational invariance, and find 16 different components. Applying this result to electrically neutral objects, we show that the macroscopic potential depends on 72 measurable parameters. We then derive the potential induced by the exchange of a new gauge boson or spinless particle, and compare the limits set by measurements of macroscopic forces to the astrophysical limits on the couplings of these particles.Comment: 37 page
    corecore