2,892 research outputs found

    Numerical renormalization group calculation of near-gap peaks in spectral functions of the Anderson model with superconducting leads

    Full text link
    We use the numerical renormalization group method (NRG) to investigate a single-impurity Anderson model with a coupling of the impurity to a superconducting host. Analysis of the energy flow shows, in contrast to previous belief, that NRG iterations can be performed up to a large number of sites, corresponding to energy differences far below the superconducting gap. This allows us to calculate the impurity spectral function very accurately for frequencies near the gap edge, and to resolve, in a certain parameter regime, sharp peaks in the spectral function close to the gap edge.Comment: 18 pages, 7 figures, accepted for publication in Journal of Physics: Condensed Matte

    Microscopic model of critical current noise in Josephson-junction qubits: Subgap resonances and Andreev bound states

    Full text link
    We propose a microscopic model of critical current noise in Josephson-junctions based on individual trapping-centers in the tunnel barrier hybridized with electrons in the superconducting leads. We calculate the noise exactly in the limit of no on-site Coulomb repulsion. Our result reveals a noise spectrum that is dramatically different from the usual Lorentzian assumed in simple models. We show that the noise is dominated by sharp subgap resonances associated to the formation of pairs of Andreev bound states, thus providing a possible explanation for the spurious two-level systems (microresonators) observed in Josephson junction qubits [R.W. Simmonds et al., Phys. Rev. Lett. 93, 077003 (2004)]. Another implication of our model is that each trapping-center will contribute a sharp dielectric resonance only in the superconducting phase, providing an effective way to validate our results experimentally. We derive an effective Hamiltonian for a qubit interacting with Andreev bound states, establishing a direct connection between phenomenological models and the microscopic parameters of a Fermionic bath.Comment: 11 pages, 8 figure

    Interaction quench dynamics in the Kondo model in presence of a local magnetic field

    Get PDF
    In this work we investigate the quench dynamics in the Kondo model on the Toulouse line in presence of a local magnetic field. It is shown that this setup can be realized by either applying the local magnetic field directly or by preparing the system in a macroscopically spin-polarized initial state. In the latter case, the magnetic field results from a subtlety in applying the bosonization technique where terms that are usually referred to as finite-size corrections become important in the present non-equilibrium setting. The transient dynamics is studied by analyzing exact analytical results for the local spin dynamics. The time scale for the relaxation of the local dynamical quantities turns out to be exclusively determined by the Kondo scale. In the transient regime, one observes damped oscillations in the local correlation functions with a frequency set by the magnetic field.Comment: 8 pages, 2 figures; minor changes, version as publishe

    Effective Mass Dirac-Morse Problem with any kappa-value

    Full text link
    The Dirac-Morse problem are investigated within the framework of an approximation to the term proportional to 1/r21/r^2 in the view of the position-dependent mass formalism. The energy eigenvalues and corresponding wave functions are obtained by using the parametric generalization of the Nikiforov-Uvarov method for any Îş\kappa-value. It is also studied the approximate energy eigenvalues, and corresponding wave functions in the case of the constant-mass for pseudospin, and spin cases, respectively.Comment: 12 page

    Level-occupation switching of the Quantum Dot, and phase anomalies in mesoscopic interferometry

    Full text link
    For a variety of quantum dots, the widths of different single-particle levels may naturally differ by orders of magnitude. In particular, the width of one strongly coupled level may be larger than the spacing between other, very narrow, levels. We found that in this case many consecutive Coulomb blockade peaks are due to occupation of the same broad level. Between the peaks the electron jumps from this level to one of the narrow levels and the transmission through the dot at the next resonance essentially repeats that at the previous one. This offers a natural explanation of the salient features of the behavior of the transmission phase in an interferometer with a QD. The theory of this effect will be reviewed with special emphasis on the role of the interactions. New results on the dot-charging measurements and the fine structure of occupation switchings will be presented, accompanied by the unified description of the whole series of CB peaks caused by a single broad level. We then discuss the case where the system approaches the Kondo regime.Comment: 30 pages in IOP format, 11 figure

    Rho-meson form factors and QCD sum rules

    Full text link
    We present predictions for rho-meson form factors obtained from the analysis of QCD sum rules in next-to-leading order of perturbation theory. The radiative corrections turn out to be sizeable and should be taken into account in rigorous theoretical analysis.Comment: LaTeX file, 14 pages, 7 figure

    Probing liquid surface waves, liquid properties and liquid films with light diffraction

    Full text link
    Surface waves on liquids act as a dynamical phase grating for incident light. In this article, we revisit the classical method of probing such waves (wavelengths of the order of mm) as well as inherent properties of liquids and liquid films on liquids, using optical diffraction. A combination of simulation and experiment is proposed to trace out the surface wave profiles in various situations (\emph{eg.} for one or more vertical, slightly immersed, electrically driven exciters). Subsequently, the surface tension and the spatial damping coefficient (related to viscosity) of a variety of liquids are measured carefully in order to gauge the efficiency of measuring liquid properties using this optical probe. The final set of results deal with liquid films where dispersion relations, surface and interface modes, interfacial tension and related issues are investigated in some detail, both theoretically and experimentally. On the whole, our observations and analyses seem to support the claim that this simple, low--cost apparatus is capable of providing a wealth of information on liquids and liquid surface waves in a non--destructive way.Comment: 25 pages, 12 figures, to appear in Measurement Science and Technology (IOP

    Decay modes of 250No

    Full text link
    The Fragment Mass Analyzer at the ATLAS facility has been used to unambiguously identify the mass number associated with different decay modes of the nobelium isotopes produced via 204Pb(48Ca,xn)(252-x)No reactions. Isotopically pure (>99.7%) 204Pb targets were used to reduce background from more favored reactions on heavier lead isotopes. Two spontaneous fission half-lives (t_1/2 = 3.7+1.1-0.8 us and 43+22-15 us) were deduced from a total of 158 fission events. Both decays originate from 250No rather than from neighboring isotopes as previously suggested. The longer activity most likely corresponds to a K-isomer in this nucleus. No conclusive evidence for an alpha branch was observed, resulting in upper limits of 2.1% for the shorter lifetime and 3.4% for the longer activity.Comment: RevTex4, 10 pages, 5 figures, submitted to PR

    Observations of the phase-locked 2 day wave over the Australian sector using medium-frequency radar and airglow data

    Get PDF
    Extent: 22p.The quasi 2 day wave, with a nominal mean period just above 50 h, is a significant feature of the 80–100 km altitude region in both hemispheres. It becomes particularly prominent in the Southern Hemisphere summer at midlatitudes where, a short time after summer solstice, its amplitude rapidly increases and its mean period is found to be approximately 48 h, producing an oscillation phase locked in local time. This lasts for a few weeks. Presented here are observations of the meridional winds and airglow over two sites in Australia, for 4 years during the austral summers of 2003–2006. We show that during those times when the large-amplitude phase-locked 2 day wave (PL-TDW) is present the diurnal tide greatly decreases. This is consistent with the Walterscheid and Vincent (1996) model in which the PL-TDW derives its energy from a parametric excitation by the diurnal tide. These data also show that the diurnal tide is more suppressed and the PL-TDW amplitude is larger in odd-numbered years, suggesting a biannual effect. The airglow data indicated that, for the PL-TDW, the winds and temperature are nearly out of phase. When the PL-TDW is present airglow amplitudes can become quite large, a result dependent on the local time of the PL-TDW maximum. The airglow intensity response was, in general, much larger than what would be expected from the airglow temperature response, suggesting that the PL-TDW is causing a significant composition change possibly due to minor constituent transport.J. H. Hecht, R. L. Walterscheid, L. J. Gelinas, R. A. Vincent, I. M. Reid, and J. M. Woith
    • …
    corecore