10,809 research outputs found

    Analysis of DSN software anomalies

    Get PDF
    A categorized data base of software errors which were discovered during the various stages of development and operational use of the Deep Space Network DSN/Mark 3 System was developed. A study team identified several existing error classification schemes (taxonomies), prepared a detailed annotated bibliography of the error taxonomy literature, and produced a new classification scheme which was tuned to the DSN anomaly reporting system and encapsulated the work of others. Based upon the DSN/RCI error taxonomy, error data on approximately 1000 reported DSN/Mark 3 anomalies were analyzed, interpreted and classified. Next, error data are summarized and histograms were produced highlighting key tendencies

    Crowded-Field Astrometry with the Space Interferometry Mission - I. Estimating the Single-Measurement Astrometric Bias Arising from Confusion

    Full text link
    The accuracy of position measurements on stellar targets with the future Space Interferometry Mission (SIM) will be limited not only by photon noise and by the properties of the instrument (design, stability, etc.) and the overall measurement program (observing strategy, reduction methods, etc.), but also by the presence of other "confusing" stars in the field of view (FOV). We use a simple "phasor" model as an aid to understanding the main effects of this "confusion bias" in single observations with SIM. This analytic model has been implemented numerically in a computer code and applied to a selection of typical SIM target fields drawn from some of the Key Projects already accepted for the Mission. We expect that less than 1% of all SIM targets will be vulnerable to confusion bias; we show that for the present SIM design, confusion may be a concern if the surface density of field stars exceeds 0.4 star/arcsec^2. We have developed a software tool as an aid to ascertaining the possible presence of confusion bias in single observations of any arbitrary field. Some a priori knowledge of the locations and spectral energy distributions of the few brightest stars in the FOV is helpful in establishing the possible presence of confusion bias, but the information is in general not likely to be available with sufficient accuracy to permit its removal. We discuss several ways of reducing the likelihood of confusion bias in crowded fields. Finally, several limitations of the present semi-analytic approach are reviewed, and their effects on the present results are estimated. The simple model presented here provides a good physical understanding of how confusion arises in a single SIM observation, and has sufficient precision to establish the likelihood of a bias in most cases.Comment: 28 pages, 20 figures, 1 table; to appear in December 2007 issue of PAS

    Computer Simulation of Particle Suspensions

    Get PDF
    Particle suspensions are ubiquitous in our daily life, but are not well understood due to their complexity. During the last twenty years, various simulation methods have been developed in order to model these systems. Due to varying properties of the solved particles and the solvents, one has to choose the simulation method properly in order to use the available compute resources most effectively with resolving the system as well as needed. Various techniques for the simulation of particle suspensions have been implemented at the Institute for Computational Physics allowing us to study the properties of clay-like systems, where Brownian motion is important, more macroscopic particles like glass spheres or fibers solved in liquids, or even the pneumatic transport of powders in pipes. In this paper we will present the various methods we applied and developed and discuss their individual advantages.Comment: 31 pages, 11 figures, to appear in Lecture Notes in Applied and Computational Mechanics, Springer (2006

    Development of sputtered techniques for thrust chambers, task 1

    Get PDF
    Filler materials proposed for use in the sputter fabrication regeneratively cooled thrust chambers were evaluated. Low melting castable alloys, CERROBEND. CERROCAST, and CERROTRU, slurry applied SERMETEL 481 and flame-sprayed aluminum were investigated as filler materials. Sputter deposition from a cylindrical cathode inverted magnestron was used to apply an OFHC copper closeout layer to filled OFHC copper ribbed-wall cylindrical substrates. The sputtered closeout layer structure was evaluated with respect to filler material contamination, predeposition machining and finishing operations, and deposition parameters. The application of aluminum by flame-spraying resulted in excessiver filler porosity. Though the outgassing from this porosity was found to be detrimental to the closeout layer structure, bond strengths in excess of 10,500 psi were achieved. Removal of the aluminum from the grooves was readily accomplished by leaching in a 7.0 molar solution of sodium hydroxide at 353 K. Of the other filler materials evaluated, CERROTRU was found to be the most suitable material with respect to completely filling the ribbed-wall cylinders and vacuum system compatibility. However, bond contamination resulted in low closeout layer bond strength with the CERROTRU filler. CERROBEND, CERROCAST, and SERMETEL 481 were found to be unacceptable as filler materials

    Pairing and Isospin Symmetry in Proton-Rich Nuclei

    Get PDF
    Unlike their lighter counterparts, most odd-odd N=Z nuclei with mass A > 40 40 have ground states with isospin T=1, suggesting an increased role for the isovector pairing interaction. A simple SO(5) seniority-like model of this interaction reveals a striking and heretofore unnoticed interplay between like-particle and neutron-proton isovector pairing near N=Z that is reflected in the number of each kind of pair as a function of A and T. Large scale shell-model calculations exhibit the same trends, despite the simultaneous presence of isoscalar pairs, deformation, and other correlations.Comment: 8 pages + 2 postscript figures, in RevTeX. Discussion of isospin projection in HFB added. This version to appear in Phys. Lett.

    Amplitude control of quantum interference

    Full text link
    Usually, the oscillations of interference effects are controlled by relative phases. We show that varying the amplitudes of quantum waves, for instance by changing the reflectivity of beam splitters, can also lead to quantum oscillations and even to Bell violations of local realism. We first study theoretically a generalization of the Hong-Ou-Mandel experiment to arbitrary source numbers and beam splitter transmittivity. We then consider a Bell type experiment with two independent sources, and find strong violations of local realism for arbitrarily large source number NN; for small NN, one operator measures essentially the relative phase of the sources and the other their intensities. Since, experimentally, one can measure the parity of the number of atoms in an optical lattice more easily than the number itself, we assume that the detectors measure parity.Comment: 4 pages; 4 figure

    Development of sputtered techniques for thrust chambers

    Get PDF
    Procedures for closing out coolant passages in regeneratively cooled thrust chambers by triode sputtering, using post and hollow Cu-0.15 percent Zr cathodes are described. The effects of aluminum composite filler materials, substrate preparation, sputter cleaning, substrate bias current density and system geometry on closeout layer bond strength and structure are evaluated. High strength closeout layers were sputtered over aluminum fillers. The tensile strength and microstructure of continuously sputtered Cu-0.15 percent Zr deposits were determined. These continuous sputtered deposits were as thick as 0.75 cm. Tensile strengths were consistently twice as great as the strength of the material in wrought form

    Construction of SU(3) irreps in canonical SO(3)-coupled bases

    Full text link
    Alternative canonical methods for defining canonical SO(3)-coupled bases for SU(3) irreps are considered and compared. It is shown that a basis that diagonalizes a particular linear combination of SO(3) invariants in the SU(3) universal enveloping algebra gives basis states that have good KK quantum numbers in the asymptotic rotor-model limit.Comment: no figure
    corecore