137 research outputs found

    Rickettsia felis Infection, Tunisia

    Get PDF
    We report, for the first time, serologic evidence of Rickettsia felis and R. aeschlimannii infections acquired in Tunisia from 1998 to 2003. We found that most patients with antibodies against both R. conorii and R. typhi had serologic evidence of R. felis infection

    The Outcome of Phagocytic Cell Division with Infectious Cargo Depends on Single Phagosome Formation

    Get PDF
    Given that macrophages can proliferate and that certain microbes survive inside phagocytic cells, the question arises as to the post-mitotic distribution of microbial cargo. Using macrophage-like cells we evaluated the post-mitotic distribution of intracellular Cryptococcus yeasts and polystyrene beads by comparing experimental data to a stochastic model. For beads, the post-mitotic distribution was that expected from chance alone. However, for yeast cells the post-mitotic distribution was unequal, implying preferential sorting to one daughter cell. This mechanism for unequal distribution was phagosomal fusion, which effectively reduced the intracellular particle number. Hence, post-mitotic intracellular particle distribution is stochastic, unless microbial and/or host factors promote unequal distribution into daughter cells. In our system unequal cargo distribution appeared to benefit the microbe by promoting host cell exocytosis. Post-mitotic infectious cargo distribution is a new parameter to consider in the study of intracellular pathogens since it could potentially define the outcome of phagocytic-microbial interactions

    Rickettsia felis, an emerging flea-transmitted human pathogen

    Get PDF
    Rickettsia felis was first recognised two decades ago and has now been described as endemic to all continents except Antarctica. The rickettsiosis caused by R. felis is known as flea-borne spotted fever or cat-flea typhus. The large number of arthropod species found to harbour R. felis and that may act as potential vectors support the view that it is a pan-global microbe. The main arthropod reservoir and vector is the cat flea, Ctenocephalides felis, yet more than 20 other species of fleas, ticks, and mites species have been reported to harbour R. felis. Few bacterial pathogens of humans have been found associated with such a diverse range of invertebrates. With the projected increase in global temperature over the next century, there is concern that changes to the ecology and distribution of R. felis vectors may adversely impact public health

    Exposure and risk factors to Coxiella burnetii, spotted fever group and typhus group rickettsiae, and Bartonella henselae among volunteer blood donors in Namibia

    Get PDF
    Background: The role of pathogen-mediated febrile illness in sub-Saharan Africa is receiving more attention, especially in Southern Africa where four countries (including Namibia) are actively working to eliminate malaria. With a high concentration of livestock and high rates of companion animal ownership, the influence of zoonotic bacterial diseases as causes of febrile illness in Namibia remains unknown.Methodology/Principal Findings: The aim of the study was to evaluate exposure to Coxiella burnetii, spotted fever and typhus group rickettsiae, and Bartonella henselae using IFA and ELISA (IgG) in serum collected from 319 volunteer blood donors identified by the Blood Transfusion Service of Namibia (NAMBTS). Serum samples were linked to a basic questionnaire to identify possible risk factors. The majority of the participants (64.8%) had extensive exposure to rural areas or farms. Results indicated a C. burnetii prevalence of 26.1% (screening titre 1:16), and prevalence rates of 11.9% and 14.9% (screening titre 1:100) for spotted fever group and typhus group rickettsiae, respectively. There was a significant spatial association between C. burnetii exposure and place of residence in southern Namibia (P0.012), especially cattle (P>0.006), were also significantly associated with C. burnetii exposure. Males were significantly more likely than females to have been exposed to spotted fever (P<0.013) and typhus (P<0.011) group rickettsiae. Three (2.9%) samples were positive for B. henselae possibly indicating low levels of exposure to a pathogen never reported in Namibia.Conclusions/Significance: These results indicate that Namibians are exposed to pathogenic fever-causing bacteria, most of which have flea or tick vectors/reservoirs. The epidemiology of febrile illnesses in Namibia needs further evaluation in order to develop comprehensive local diagnostic and treatment algorithms.Peer reviewedEntomology and Plant Patholog
    corecore