251 research outputs found

    Peak Oil:Die Herausforderung lokaler Erdölabhängigkeit am Beispiel Münster

    Full text link
    Das Erdölzeitalter neigt sich dem Ende zu – daran ändern auch Schieferöle, Agrartreibstoffe oder Verfahren wie das Fracking langfristig nichts. Einer Gruppe von Studierenden an der Uni Münster ging die wissenschaftliche, politische und gesellschaftliche Beschäftigung mit dieser Herausforderung zu langsam. Aus diesem Grund initiierte sie 2012 eigenständig ein interdisziplinäres Peak-Oil-Seminar und begleitete Studierende dabei, in gesellschaftsrelevanten Sektoren der Energieversorgung, des Transports, der lokalen Wirtschaft, der Ernährung, der Gesundheit und der privaten Haushalte eigene Fragestellungen zu entwickeln und diesen nachzugehen. Das Ergebnis ist ein Bericht, der am Beispiel Münster die Brisanz und Aktualität knapper werdender Ressourcen herausstreicht, der die Wichtigkeit der lokalen, vorausschauenden und freiwillig-kreativen Verringerung der Öl-Abhängigkeit hervorhebt und der nicht zuletzt eine Lanze bricht für Formate transformativen und offenen Forschens und Handelns. <br

    Nutritional stress enhances cell viability of odontoblast-like cells subjected to low level laser irradiation

    Get PDF
    In spite of knowing that cells under stress are biostimulated by low level laser (LLL) irradiation, the ideal condition of stress to different cell lines has not yet been established. Consequently, the aim of the present in vitro study was to evaluate the effects of a defined parameter of LLL irradiation applied on stressed odontoblast-like pulp cells (MDPC-23). The cells were seeded (12500 cells/cm2) in wells of 24-well plates using complete culture medium (DMEM) and incubated for 24 hours. Then, the DMEM was replaced by a new medium with low concentrations (nutritional stress condition) of fetal bovine serum (FBS) giving rise to the following experimental groups: G1: 2% FBS; G2: 5% FBS; and G3: 10% FBS. The cells were irradiated three times with LLL in specific parameters (808±3 nm, 100 mW, 1.5 J/cm2) every 24 hours. No irradiation was carried out in groups G4 (2% FBS-Control), G5 (5% FBS-Control), and G6 (10% FBS-Control). For all groups, the cell metabolism (MTT assay) and morphology (SEM) was evaluated. The experimental groups showed enhanced cell metabolism and normal cell morphology regardless of FBS concentration. A slight increase in the cell metabolism was observed only in group G2. It was concluded that cell nutritional stress caused by reducing the concentration of FBS to 5% is the most suitable method to assess the biostimulation of LLL irradiated MDPC-23 cells.FAPESP (07/50646-3, 08/08424-6, and 08/54785-0)CNPq (476137/2006, 301029/2007-5

    Metamaterial-Enhanced Nonlinear Terahertz Spectroscopy

    Get PDF
    We demonstrate large nonlinear terahertz responses in the gaps of metamaterial split ring resonators in several materials and use nonlinear THz transmission and THz-pump/THz-probe spectroscopy to study the nonlinear responses and dynamics. We use the field enhancement in the SRR gaps to initiate high-field phenomena at lower incident fields. In vanadium dioxide, we drive the insulator-to-metal phase transition with high-field THz radiation. The film conductivity increases by over two orders of magnitude and the phase transition occurs on a several picosecond timescale. In gallium arsenide, we observe high-field transport phenomena, including mobility saturation and impact ionization. The carrier density increases by up to ten orders of magnitude at high fields. At the highest fields, we demonstrate THz-induced damage in both vanadium dioxide and gallium arsenide.United States. Dept. of Energy (DOE-BES, grant DE-FG02- 09ER46643)United States. Office of Naval Research (ONR Grant No. N00014-09-1-1103

    Cherenkov radiation emitted by ultrafast laser pulses and the generation of coherent polaritons

    Full text link
    We report on the generation of coherent phonon polaritons in ZnTe, GaP and LiTaO3_{3} using ultrafast optical pulses. These polaritons are coupled modes consisting of mostly far-infrared radiation and a small phonon component, which are excited through nonlinear optical processes involving the Raman and the second-order susceptibilities (difference frequency generation). We probe their associated hybrid vibrational-electric field, in the THz range, by electro-optic sampling methods. The measured field patterns agree very well with calculations for the field due to a distribution of dipoles that follows the shape and moves with the group velocity of the optical pulses. For a tightly focused pulse, the pattern is identical to that of classical Cherenkov radiation by a moving dipole. Results for other shapes and, in particular, for the planar and transient-grating geometries, are accounted for by a convolution of the Cherenkov field due to a point dipole with the function describing the slowly-varying intensity of the pulse. Hence, polariton fields resulting from pulses of arbitrary shape can be described quantitatively in terms of expressions for the Cherenkov radiation emitted by an extended source. Using the Cherenkov approach, we recover the phase-matching conditions that lead to the selection of specific polariton wavevectors in the planar and transient grating geometry as well as the Cherenkov angle itself. The formalism can be easily extended to media exhibiting dispersion in the THz range. Calculations and experimental data for point-like and planar sources reveal significant differences between the so-called superluminal and subluminal cases where the group velocity of the optical pulses is, respectively, above and below the highest phase velocity in the infrared.Comment: 13 pages, 11 figure
    corecore