223 research outputs found

    Comparison between physical properties of ring-spun yarn and compact yarns spun from different pneumatic compacting systems

    Get PDF
    A comparative study pertaining to physical and mechanical properties of ring-spun yarn vis-à-vis compact yarns spun using three different compacting systems has been reported. Rieter (K-44), Toyota (RX-240) and Suessen (Fiomax) spinning machines have been used and the condensing process of the fibres in the yarn cross-section as per these compact spinning systems is accomplished pneumatically. Thus, a yarn of linear density 5.9 tex (100 Ne) is spun on the spinning systems using Egyptian cotton of the type Giza 86. One way Anova together with least significant difference are employed to feature the means of the properties of spun yarns and a significant difference among them is observed. According to the performed statistical analysis, there is a significant difference between ring - spun yarn properties and each of the pnuematic compact spun yarns. These compact-spun yarns are also found to differ significantly in terms of their physical and mechanical properties; however, they are all found superior to the ring-spun yarn

    Degradation studies of hydrophilic, partially degradable and bioactive cements (HDBCs) incorporating chemically modified starch

    Get PDF
    The degradation rate in Hydrophilic, Degradable and Bioactive Cements (HDBCs) containing starch/cellulose acetate blends (SCA) is still low. In order to increase degradation, higher amounts of starch are required to exceed the percolation threshold. In this work, gelatinization, acetylation and methacrylation of corn starch were performed and assessed as candidates to replace SCA in HDBCs. Formulations containing methacrylated starch were prepared with different molar ratios of 2-hydroxyethyl methacrylate and methyl methacrylate in the liquid component and the amount of residual monomer released into water was evaluated. The concentration of reducing sugars, percentage of weight loss and morphologic analyses after degradation all confirmed increased degradation of HDBC with alpha-amylase, with the appearance of pores and voids from enzymatic action. Methacrylated starch therefore is a better alternative to be used as the solid component of HDBC then SCA, since it leads to the formation of cements with a lower release of toxic monomers and more prone to hydrolytic degradation while keeping the other advantages of HDBCs.The authors acknowledge to Foundation for Science and Technology (FCT), who supported this study through funds from project Concept2Cement (POCTI/CTM/60735/2004)

    Morphing in nature and beyond: a review of natural and synthetic shape-changing materials and mechanisms

    Get PDF
    Shape-changing materials open an entirely new solution space for a wide range of disciplines: from architecture that responds to the environment and medical devices that unpack inside the body, to passive sensors and novel robotic actuators. While synthetic shape-changing materials are still in their infancy, studies of biological morphing materials have revealed key paradigms and features which underlie efficient natural shape-change. Here, we review some of these insights and how they have been, or may be, translated to artificial solutions. We focus on soft matter due to its prevalence in nature, compatibility with users and potential for novel design. Initially, we review examples of natural shape-changing materials—skeletal muscle, tendons and plant tissues—and compare with synthetic examples with similar methods of operation. Stimuli to motion are outlined in general principle, with examples of their use and potential in manufactured systems. Anisotropy is identified as a crucial element in directing shape-change to fulfil designed tasks, and some manufacturing routes to its achievement are highlighted. We conclude with potential directions for future work, including the simultaneous development of materials and manufacturing techniques and the hierarchical combination of effects at multiple length scales.</p

    Catalytic activation of peracetic acid using chitosan-metal complex for low-temperature bleaching of cotton fabric

    No full text
    444-449A novel approach for bleaching of cotton fabric has been used and the most appropriate conditions for bleaching established. The technique adopted is based on the utilization of tetraacetylethylenediamine (TAED) along with hydrogen peroxide (H2O2) where in-situ peracetic acid (PAA) formation takes place via reaction of TAED and H2O2. Decomposition of the so created PAA to enhance its bleaching effect has been induced by using chitosan-Mo complex or chitosan-Co complex as a catalyst. Regulation of the reaction of H2O2 with TAED has been achieved using sodium silicate whereas the regulation of the decomposition of PAA and, therefore, its bleaching action has been achieved using sodium lauryl sulphate (SLS). Replacement of H2O2 with other oxidizing agents, namely ammonium persulphate and potassium bromated, was not successful. In contrast, the perborate did succeed but with lower efficiency when compared with H2O2
    corecore