7 research outputs found

    A dataset for Audio-Visual Sound Event Detection in Movies

    Full text link
    Audio event detection is a widely studied audio processing task, with applications ranging from self-driving cars to healthcare. In-the-wild datasets such as Audioset have propelled research in this field. However, many efforts typically involve manual annotation and verification, which is expensive to perform at scale. Movies depict various real-life and fictional scenarios which makes them a rich resource for mining a wide-range of audio events. In this work, we present a dataset of audio events called Subtitle-Aligned Movie Sounds (SAM-S). We use publicly-available closed-caption transcripts to automatically mine over 110K audio events from 430 movies. We identify three dimensions to categorize audio events: sound, source, quality, and present the steps involved to produce a final taxonomy of 245 sounds. We discuss the choices involved in generating the taxonomy, and also highlight the human-centered nature of sounds in our dataset. We establish a baseline performance for audio-only sound classification of 34.76% mean average precision and show that incorporating visual information can further improve the performance by about 5%. Data and code are made available for research at https://github.com/usc-sail/mica-subtitle-aligned-movie-sound

    Understanding Spoken Language Development of Children with ASD Using Pre-trained Speech Embeddings

    Full text link
    Speech processing techniques are useful for analyzing speech and language development in children with Autism Spectrum Disorder (ASD), who are often varied and delayed in acquiring these skills. Early identification and intervention are crucial, but traditional assessment methodologies such as caregiver reports are not adequate for the requisite behavioral phenotyping. Natural Language Sample (NLS) analysis has gained attention as a promising complement. Researchers have developed benchmarks for spoken language capabilities in children with ASD, obtainable through the analysis of NLS. This paper proposes applications of speech processing technologies in support of automated assessment of children's spoken language development by classification between child and adult speech and between speech and nonverbal vocalization in NLS, with respective F1 macro scores of 82.6% and 67.8%, underscoring the potential for accurate and scalable tools for ASD research and clinical use.Comment: Accepted to Interspeech 2023, 5 page

    A Review of Speech-centric Trustworthy Machine Learning: Privacy, Safety, and Fairness

    Full text link
    Speech-centric machine learning systems have revolutionized many leading domains ranging from transportation and healthcare to education and defense, profoundly changing how people live, work, and interact with each other. However, recent studies have demonstrated that many speech-centric ML systems may need to be considered more trustworthy for broader deployment. Specifically, concerns over privacy breaches, discriminating performance, and vulnerability to adversarial attacks have all been discovered in ML research fields. In order to address the above challenges and risks, a significant number of efforts have been made to ensure these ML systems are trustworthy, especially private, safe, and fair. In this paper, we conduct the first comprehensive survey on speech-centric trustworthy ML topics related to privacy, safety, and fairness. In addition to serving as a summary report for the research community, we point out several promising future research directions to inspire the researchers who wish to explore further in this area

    Deep multiple instance learning for foreground speech localization in ambient audio from wearable devices

    Get PDF
    Over the recent years, machine learning techniques have been employed to produce state-of-the-art results in several audio related tasks. The success of these approaches has been largely due to access to large amounts of open-source datasets and enhancement of computational resources. However, a shortcoming of these methods is that they often fail to generalize well to tasks from real life scenarios, due to domain mismatch. One such task is foreground speech detection from wearable audio devices. Several interfering factors such as dynamically varying environmental conditions, including background speakers, TV, or radio audio, render foreground speech detection to be a challenging task. Moreover, obtaining precise moment-to-moment annotations of audio streams for analysis and model training is also time-consuming and costly. In this work, we use multiple instance learning (MIL) to facilitate development of such models using annotations available at a lower time-resolution (coarsely labeled). We show how MIL can be applied to localize foreground speech in coarsely labeled audio and show both bag-level and instance-level results. We also study different pooling methods and how they can be adapted to densely distributed events as observed in our application. Finally, we show improvements using speech activity detection embeddings as features for foreground detection. © 2021, The Author(s).National Institutes of HealthOpen access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    [The effect of low-dose hydrocortisone on requirement of norepinephrine and lactate clearance in patients with refractory septic shock].

    No full text
    corecore