3,269 research outputs found

    Real-time testing of the on-site warning algorithm in southern California and its performance during the July 29 2008 M_w5.4 Chino Hills earthquake

    Get PDF
    The real-time performance of the τ_c -P_d on-site early warning algorithm currently is being tested within the California Integrated Seismic Network (CISN). Since January 2007, the algorithm has detected 58 local earthquakes in southern California and Baja with moment magnitudes of 3.0 ≤ M_w ≤ 5.4. Combined with newly derived station corrections the algorithm allowed for rapid determination of moment magnitudes and Modified Mercalli Intensity (MMI) with uncertainties of ±0.5 and ±0.7 units, respectively. The majority of reporting delays ranged from 9 to 16 s. The largest event, the July 29 2008 M_w5.4 Chino Hills earthquake, triggered a total of 60 CISN stations in epicentral distances of up to 250 km. Magnitude predictions at these stations ranged from M_w4.4 to M_w6.5 with a median of M_w5.6. The closest station would have provided up to 6 s warning at Los Angeles City Hall, located 50 km to the west-northwest of Chino Hills

    Seismological research issues in the San Diego region

    Get PDF
    What is the nature of earthquake ground motions that can be expected in San Diego's foreseeable future? Although this is the most basic of questions underlying the adequate design of structures to resist earthquakes, answers to this question are disturbingly uncertain. A reasonable assumption is that future earthquake ground motions will be similar to those that have occurred in the past. When compared with San Francisco or Los Angeles, San Diego has historically experienced relatively mild earthquake shaking. Unfortunately, San Diego's written history is very short compared to the time scales of earthquake repetition. Are there sources of earthquakes that may cause damage in San Diego and what is their frequency? Mapping of geologic structures and the study of patterns of small earthquakes are the primary tools for recognizing potentially active faults. There are features in both the geologic structure and the seismicity that are suggestive of major active faults that could pose a serious hazard to San Diego. Furthermore, there is evidence that the rate of occurrence of small earthquakes has increased within the last 5 years when compared with the previous 50 years. However, these features are not well studied or understood. Even if the potential sources of earthquakes were well understood, the problem of anticipating the range of future ground motions is difficult. The nature of shaking from earthquakes is strongly affected by the nature of seismic wave propagation through complex geologic structures (path effects). Although path effects are likely to be of great importance in San Diego, relatively little specific information is available

    Finite-Fault Rupture Detector (FinDer): Going Real-Time in Californian ShakeAlert Warning System

    Get PDF
    Rapid detection of local and regional earthquakes and issuance of fast alerts for impending shaking is considered beneficial to save lives, reduce losses, and shorten recovery times after destructive events (Allen et al., 2009). Over the last two decades, several countries have built operational earthquake early warning (EEW) systems, including Japan (Hoshiba et al., 2008), Mexico (Espinosa-Aranda et al., 1995), Romania (Mărmureanu et al., 2011), Turkey (Erdik et al., 2003), Taiwan (Hsiao et al., 2011), and China (Peng et al., 2011). Other countries, such as the United States (Böse, Allen, et al., 2013), Italy (Satriano et al., 2011), and Switzerland (Behr et al., 2015), are currently developing systems or evaluating algorithms in their seismic real-time networks

    Detecting failure events in buildings: a numerical and experimental analysis

    Get PDF
    A numerical method is used to investigate an approach for detecting the brittle fracture of welds associated with beam -column connections in instrumented buildings in real time through the use of time-reversed Green’s functions and wave propagation reciprocity. The approach makes use of a prerecorded catalog of Green’s functions for an instrumented building to detect failure events in the building during a later seismic event by screening continuous data for the presence of waveform similarities to one of the prerecorded events. This study addresses whether a set of Green’s functions in response to an impulsive force load can be used to approximate the response of the structure to a localized failure event such as a brittle weld fracture. Specifically, we investigate whether prerecorded Green’s functions can be used to determine the absolute time and location of a localized failure event in a building. We also seek to differentiate between sources such as a weld fracture that are structurally damaging and sources such as falling or colliding furniture and other non-structural elements that do not contribute to structural failure. This is explored numerically by comparing the dynamic response of a finite-element cantilevered beam model structure to a variety of loading mechanisms. A finite-element method is employed to determine the behavior of the resulting elastic waves and to obtain a general understanding of the structural response

    Structural health monitoring through dense instrumentation by community participants: the Community Seismic Network and Quake-Catcher Network

    Get PDF
    The Community Seismic Network and Quake-Catcher Network involve participants from communities at large to install low-cost accelerometers in houses and buildings for assessment of shaking intensity due to earthquakes. The seismometers are designed for two types of connec-tions: a USB-connected device which connects to the host’s computer, and a stand-alone sensor-plug-computer device that directly connects to the internet. The three-component sensors report both continuous data and amplitude anomalies in local acceleration to a Cloud computing service consisting of data centers geographically distributed across the continent, or to a distributed computing system. The continuous time series waveform data are being used to evaluate response parameters such as peak acceleration, peak velocity, and inter-story drift values. In addition, modal properties such as fundamental and higher mode frequencies and mode shapes are being computed from small and moderate earthquake data from the building. Building motion is computed for every floor of the building using only earthquake records from a single floor. Visualization models that map the instrumented buildings’ responses have been construct-ed using SketchUp and an associated plug-in to Matlab with recorded shaking data. This data visualization approach is different from other techniques because each building model is customized to show actual data recorded from that building on varying spatial scales, without the need for large-scale parallel computing facilities or complicated software that requires a steep learning curve

    A Method to Detect Structural Damage Using High-Frequency Seismograms

    Get PDF
    A numerical study is performed to gain insight into applying a novel method to detect high-frequency dynamic failure in buildings. The method relies on prerecorded catalog of Green's functions for instrumented buildings. Structural failure during a seismic event is detected by screening continuous data for the presence of waveform similarities to each of the cataloged building responses. In the first part of this numerical study, an impulse-like force is applied to a beam column connection in a linear elastic steel frame. A time-reversed reciprocal method is used to demonstrate that the resulting simulated displacements can be used to determine the absolute time and location of the applied force. In the second part of the study, a steel frame's response to two loading cases, an impulse-like force and an opening crack tensile stress, is computed on a temporal scale of microseconds. Results indicate that the velocity waveform generated by a tensile crack can be approximated by the velocity waveform generated by an impulse-like force load applied at the proper location. These results support the idea of using a nondestructive impulse-like force (e.g. hammer blow) to characterize the building response to high-frequency dynamic failure (e.g. weld fracture)

    Grasses and Legumes for Cellulosic Bioenergy

    Get PDF
    Human life has depended on renewable sources of bioenergy for many thousands of years, since the time humans fi rst learned to control fi re and utilize wood as the earliest source of bioenergy. The exploitation of forage crops constituted the next major technological breakthrough in renewable bioenergy, when our ancestors began to domesticate livestock about 6000 years ago. Horses, cattle, oxen, water buffalo, and camels have long been used as sources of mechanical and chemical energy. They perform tillage for crop production, provide leverage to collect and transport construction materials, supply transportation for trade and migratory routes, and create manure that is used to cook meals and heat homes. Forage crops—many of which form the basis of Grass: The 1948 Yearbook of Agriculture (Stefferud, 1948), as well as the other chapters of this volume—have composed the principal or only diet of these draft animals since the dawn of agriculture

    DETERMINATION OF LATTICE PARAMETERS WITH THE AID OF A COMPUTER. Final Report of Metallurgy Program 4.1.8.

    Full text link
    The detemnination of precision lattice parameters using a least-squares analytical treatment has been programmed into a computer. Although it was originally coded for the Argonne AVIDAC and GEORGE computers, it is now programmed for the IBM 704. The present program permits the determination of lattice parametsrs and standard errors for the orthorhombic system and for all other crystal systems of higher symmetry. The angular measurements of line positions from a Debye-Scherrer or symmetrical focusing camera or a diffractometer may be given in degrees or radians from several different wavelengths. Provision was made for using aa many as three separate correction terms for eccentricity, absorption, divergence, and others; however, one, two, three, or none at all, may be used. The exact trigonometric function or functions used in these correction terms may be selected from several of those previously suggested. If desired, a weighting factor may also be used for each reflection which may include an observation weight or trigonometric function or both. Examples will be given of lattice parameters obtained for various crystal systems using different correction terms with and without weighting. (auth

    Electrostatic Solar Sail: A Propellantless Propulsion Concept for an Interstellar Probe Mission

    Get PDF
    The propulsion of an electrostatic solar sail (E Sail) is obtained by extracting momentum from the solar wind through electrostatic repulsion of the positively charged solar wind ions (see Figure 1). The positively charged solar wind protons are deflected by the electric field created around the tethers.This electric field grows in diameter as the spacecraft moves away from the Sun, therefore the E Sail effective area grows. The growth of the E-Sail effective area allows the propulsive force to decrease as 1/r up to distances of 20 AU as it moves away from the Sun, unlike solar sail propulsion whose thrust decreases as 1/r 2 but only to distances of 5AU. This propulsive force is created without using propellant and, therefore, E-sail avoids both the mass and complexity of chemical rockets (that require large amounts of propellant, propellant storage tanks, plumbing, valves, and insulation)
    • …
    corecore