258 research outputs found

    Potential for Sorghum Genotypes in a Double-cropping System

    Get PDF
    The majority of the ethanol currently produced in the United States is derived from the hydrolysis and fermentation of starch provided from corn (Zea mays) grain. Although this is a suitable temporary solution, there are some long-term issues associated with continued use of corn grain as an ethanol feedstock. It has been estimated that if the entire U.S. corn crop was used for ethanol production, it would only meet approximately 15 to 25% of the U.S. transportation fuel need. Thus ethanol produced from biomass is expected to help meet the energy needs that grain ethanol may not provide

    Seasonal dynamics of above- and below-ground biomass and nitrogen partitioning in Miscanthus × giganteus and Panicum virgatum across three growing seasons

    Get PDF
    The first replicated productivity trials of the C4 perennial grass Miscanthus × giganteus in the United States showed this emerging ligno-cellulosic bioenergy feedstock to provide remarkably high annual yields. This covered the 5 years after planting, leaving it uncertain if this high productivity could be maintained in the absence of N fertilization. An expected, but until now unsubstantiated, benefit of both species was investment in roots and perennating rhizomes. This study examines for years 5–7 yields, biomass, C and N in shoots, roots, and rhizomes. The mean peak shoot biomass for M. × giganteus in years 5–7 was 46.5 t ha−1 in October, declining to 38.1 t ha−1 on completion of senescence and at harvest in December, and 20.7 t ha−1 declining to 11.3 t ha−1 for Panicum virgatum. There was no evidence of decline in annual yield with age. Mean rhizome biomass was significantly higher in M. × giganteus at 21.5 t ha−1compared to 7.2 t ha−1 for P. virgatum, whereas root biomass was similar at 5.6–5.9 t ha−1. M. × giganteus shoots contained 339 kg ha−1 N in August, declining to 193 kg ha−1 in December, compared to 168 and 58 kg ha−1 for P. virgatum. The results suggest substantial remobilization of N to roots and rhizomes, yet still a substantial loss with December harvests. The shoot and rhizome biomass increase of 33.6 t ha−1 during the 2-month period between June and August for M. × giganteus corresponds to a solar energy conversion of 4.4% of solar energy into biomass, one of the highest recorded and confirming the remarkable productivity potential of this plant

    Extent of pollen-mediated gene flow and seed longevity in switchgrass (Panicum virgatum L.): Implications for biosafety procedures

    Get PDF
    New switchgrass (Panicum virgatum L.) bioenergy cultivars are being bred through genetic engineering; however, baseline information is urgently needed to establish guidelines for small scale field trials prior to commercialization. In this study, we documented the pattern of pollen mediated gene flow and the extent of seed longevity in field experiments. To mimic crop-to wild, pollen-mediated gene flow, we planted wild recipient switchgrass ramets at various distances away from cultivar donor ramets at two sites in Ohio. Percent hybridization at each distance was estimated from seed set on recipient ramets, which were self-incompatible clones. The pattern of gene flow was best described by negative exponential models, and the minimum isolation distance for a 0.01% gene flow threshold was predicted to be 69 m and 109 m away from the pollen source at the two sites. To investigate seed longevity, we buried seeds of six cultivars and ten wild biotypes in Ohio and Iowa in 2011. A subset of the seeds were exhumed, germinated, and tested for dormancy over three years. Cultivars lost seed viability and dormancy significantly sooner than wild biotypes at both locations in the first year, and most biotypes lost dormancy by the second year. Cultivar seeds buried in the cooler, drier Iowa site had an overall greater longevity than those buried in Ohio. Our findings suggest that substantial amounts of pollen-mediated gene flow could occur in the immediate vicinity of switchgrass pollen sources, and current switchgrass cultivars are unlikely to persist in the seed bank for more than three years

    All Washed Out? Foliar Nutrient Resorption and Leaching in Senescing Switchgrass

    Get PDF
    Ideal bioenergy feedstocks are low in nutrients that act as anti-quality factors during conversion processes. Research has shown that delaying harvest of temperate perennial grasses until late winter reduces nutrient content, primarily due to end-season resorption, but also indicates a role for foliar nutrient leaching. While end-season resorption has been estimated, foliar nutrient leaching has not, and is a factor that could refine harvest recommendations. Additionally, establishing a baseline of mineral loss during switchgrass senescence will improve our understanding of leaf-level nutrient resorption. Therefore, we applied simulated rainfall to replicated (n = 5) plots within a previously established switchgrass stand to determine if heavy precipitation can induce nutrient leaching in senescing, unharvested foliage. Hour-long simulated rainfalls of ∼120 mm were applied every 2 weeks from early September to a killing frost in 2014 and 2015. Leaf samples were taken from the upper and lower canopy before and after simulated rainfalls and from no-rain controls and analyzed for elemental N, P, K, S, Mg, and Ca. Nutrient resorption estimates ranged from 33 to 82% in control plots. Comparison of rainfall plots to controls indicated that lower canopy leaves, upon reaching ≥50% senescence, were slightly susceptible to foliar nutrient leaching, with losses ranging from 0.3 to 2.8 g kg−1dry matter for K, P, and Mg. Nitrogen, Ca, and S were not susceptible to foliar leaching. Although statistically significant (P ≤ 0.05), these values suggested that foliar leaching was not a strong driver of nutrient loss during senescence

    Senior Recital-Emily Cottam

    Get PDF
    https://digitalcommons.usu.edu/music_programs/1016/thumbnail.jp

    Warm-Season Grass Monocultures and Mixtures for Sustainable Bioenergy Feedstock Production in the Midwest, USA

    Get PDF
    Biomass yield and adaptability to a broad range of environments are important characteristics of dedicated energy crops for sustainable bioenergy feedstock production. In addition to yield potential, the role of species diversity on ecosystem services is also growing in importance as we seek to develop sustainable feedstock production systems. The objective of this study was to compare the biomass yield potential of the commercially available germplasm of native warm-season grasses in monocultures and in blends (mixture of different cultivars of the same species) or mixtures of different species across an environmental gradient (temperature and precipitation) in the Midwest, USA. Warm-season grasses including switchgrass (Panicum virgatum L.), big bluestem (Andropogon gerardii Vitman), indiangrass (Sorghastrum nutans[L.] Nash), sideoats grama (Bouteloua curtipendula [Michx.] Torr.) and Miscanthus × giganteus (Greef and Deu.) were planted in 2009. Biomass was annually harvested from 2010 through 2015 for Urbana, IL and Mead, NE but only in 2010 and 2011 for Ames, IA. The effect of species in monocultures and mixtures (or blends) on biomass yields was significant for all locations. In monocultures, the annual biomass yields averaged over a 6-year period were 11.12 Mg ha−1 and 10.98 Mg ha−1 at Urbana and Mead, respectively, while the annual biomass yield averaged over a 2-year period was 7.99 Mg ha−1 at Ames, IA. Also, the annual biomass yields averaged across the different mixtures and blends at each location were 10.25 Mg ha−1, 9.88 Mg ha−1, and 7.64 Mg ha−1 at Urbana, Mead, and Ames, respectively. At all locations, M. × giganteus and ‘Kanlow N1’ produced the highest biomass yield in monocultures while mixtures containing switchgrass and big bluestem had the greatest mixture yield. The results from this multi-environment study suggest mixtures of different species provided no yield advantage over monocultures for bioenergy feedstocks in Illinois and Nebraska and both systems consistently produced biomass as long as April–July precipitation was near or above the average precipitation (300 mm) of the regions

    Impact of rhizome quality on Miscanthus establishment in claypan soil landscapes

    Get PDF
    Thousands of eroded-soil hectares in the U.S. Midwest have been planted to Miscanthus × giganteus as an industrial or bioenergy crop in recent years, but few studies on factors affecting crop establishment have been performed on these soils. The objective of this study was to quantify how both rhizome quality and depth of soil from the surface to the first argillic horizon (or depth to claypan (DTC1)) affected M. × giganteus establishment. Rhizome quality (i.e., mass, length, diameter, viable buds, score), emergence, growth, and winter survival were measured on rhizomes planted in 2013 at Columbia and 2014 at Centralia, Missouri on clay loam soils with a range of DTC. Rhizome emergence and early tillering slightly increased as DTC increased, but these effects on growth diminished as the season progressed. Rhizome emergence and growth were more influenced by some metrics of rhizome quality; the odds of a rhizome emerging increased by 25 and 40% with each 1 cm and 1 bud increase in rhizome length and active bud count, respectively. Furthermore, late tiller counts, basal circumference, and end-of-season biomass increased as rhizome length and mass increased. Winter survival could not be estimated as well as emergence, but the odds of survival across sites increased by 5% with each 1 cm increase in rhizome length. When DTC was categorized as soil erosion class or landscape position, only the backslope at Centralia caused greater M. × giganteus growth than other positions. These findings demonstrate the resiliency of M. × giganteus for early growth and establishment on even the most degraded parts of the claypan soil landscape and indicate that propagating larger rhizomes will improve establishment

    Perennial biomass crop establishment, community characteristics, and productivity in the upper US Midwest: Effects of cropping systems seed mixtures and biochar applications

    Get PDF
    Native perennial plants have potential as bioenergy feedstocks, but their use is currently limited by relatively long establishment times and low biomass yields. Some research suggests that incorporating plant species diversity and applying biochar as a soil amendment might alleviate these limitations by creating a more resilient crop and soil system. The objective of this research was to investigate how 1) seeded plant diversity and 2) biochar soil amendments interact to affect the establishment, yield, and plant species composition of biomass cropping systems during the first four years of growth on productive soils. We measured species emergence, cover, peak and post-frost biomass, and biomass composition for three biomass cropping systems seed mixtures – a switchgrass monoculture, a three-species grass mixture, and a highly diverse mixture of grasses and forbs – either with or without application of a mixed wood gasification biochar (9.3 Mg ha−1). We found that seed mixture had significant effects on nearly every variable measured, with switchgrass monocultures outperforming the two more diverse mixtures by the third year of the experiment (12.0 Mg ha−1 in switchgrass, 8.7 Mg ha−1 in low diversity plots, and 3.9 Mg ha−1 in high diversity plots), despite an initial switchgrass establishment failure. The high diversity plots exhibited poor sown species establishment in the first year due to high weed pressure in a drought year, but continued to improve over time. Biochar application had no consistent effect on plant biomass or community traits, and significantly affected only two community traits, light transmittance and leaf area index. Our results suggest that on productive soils perennial bioenergy productivity may be achieved through selection of one or a few high-yielding grass species, with little or no effect of biochar applications on perennial biomass crop establishment, diversity, or productivity

    Soil carbon increased by twice the amount of biochar carbon applied after six years: Field evidence of negative priming

    Get PDF
    Applying biochar to agricultural soils has been proposed as a means of sequestering carbon (C) while simultaneously enhancing soil health and agricultural sustainability. However, our understanding of the long‐term effects of biochar and annual versus perennial cropping systems and their interactions on soil properties under field conditions is limited. We quantified changes in soil C concentration and stocks, and other soil properties 6 years after biochar applications to corn (Zea mays L.) and dedicated bioenergy crops on a Midwestern US soil. Treatments were as follows: no‐till continuous corn, Liberty switchgrass (Panicum virgatum L.), and low‐diversity prairie grasses, 45% big bluestem (Andropogon gerardii), 45% Indiangrass (Sorghastrum nutans), and 10% sideoats grama (Bouteloua curtipendula), as main plots, and wood biochar (9.3 Mg/ha with 63% total C) and no biochar applications as subplots. Biochar‐amended plots accumulated more C (14.07 Mg soil C/ha vs. 2.25 Mg soil C/ha) than non‐biochar‐amended plots in the 0–30 cm soil depth but other soil properties were not significantly affected by the biochar amendments. The total increase in C stocks in the biochar‐amended plots was nearly twice (14.07 Mg soil C/ha) the amount of C added with biochar 6 years earlier (7.25 Mg biochar C/ha), suggesting a negative priming effect of biochar on formation and/or mineralization of native soil organic C. Dedicated bioenergy crops increased soil C concentration by 79% and improved both aggregation and plant available water in the 0–5 cm soil depth. Biochar did not interact with the cropping systems. Overall, biochar has the potential to increase soil C stocks both directly and through negative priming, but, in this study, it had limited effects on other soil properties after 6 years
    corecore