13 research outputs found

    Cerebral cortical microinfarcts in patients with internal carotid artery occlusion

    Get PDF
    Cerebral cortical microinfarcts (CMI) are small ischemic lesions that are associated with cognitive impairment and probably have multiple etiologies. Cerebral hypoperfusion has been proposed as a causal factor. We studied CMI in patients with internal carotid artery (ICA) occlusion, as a model for cerebral hemodynamic compromise. We included 95 patients with a complete ICA occlusion (age 66.2 +/- 8.3, 22% female) and 125 reference participants (age 65.5 +/- 7.4, 47% female). Participants underwent clinical, neuropsychological, and 3 T brain MRI assessment. CMI were more common in patients with an ICA occlusion (54%, median 2, range 1-33) than in the reference group (6%, median 0; range 1-7; OR 14.3; 95% CI 6.2-33.1; p<.001). CMI were more common ipsilateral to the occlusion than in the contralateral hemisphere (median 2 and 0 respectively; p<.001). In patients with CMI compared to patients without CMI, the number of additional occluded or stenosed cervical arteries was higher (p=.038), and cerebral blood flow was lower (B -6.2 ml/min/100 ml; 95% CI -12.0:-0.41; p=.036). In conclusion, CMI are common in patients with an ICA occlusion, particularly in the hemisphere of the occluded ICA. CMI burden was related to the severity of cervical arterial compromise, supporting a role of hemodynamics in CMI etiology.Cardiovascular Aspects of RadiologyNeuro Imaging Researc

    Perforating artery flow velocity and pulsatility in patients with carotid occlusive disease: a 7 tesla MRI study

    Get PDF
    Patients with carotid occlusive disease express altered hemodynamics in the post-occlusive vasculature and lesions commonly attributed to cerebral small vessel disease (SVD). We addressed the question if cerebral perforating artery flow measures, using a novel 7T MRI technique, are altered and related to SVD lesion burden in patients with carotid occlusive disease. 21 patients were included with a uni- (18) or bilateral (3) carotid occlusion (64±7 years) and 19 controls (65 ±10 years). Mean flow velocity and pulsatility in the perforating arteries in the semi-oval center (CSO) and basal ganglia (BG), measured with a 2D phase contrast 7T MRI sequence, were compared between patients and controls, and between hemispheres in patients with unilateral carotid occlusive disease. In patients, relations were assessed between perforating artery flow measures and SVD burden score and white matter hyperintensity (WMH) volume. CSO perforating artery flow velocity was lower in patients than controls, albeit non-significant (mean difference [95% confidence interval] 0.08 cm/s [0.00–0.16]; p = 0.053), but pulsatility was similar (0.07 [-0.04–0.18]; p = 0.23). BG flow velocity and pulsatility did not differ between patients and controls (velocity = 0.28 cm/s [-0.32–0.88]; p = 0.34; pulsatility = 0.00 [-0.10–0.11]; p = 0.97). Patients with unilateral carotid occlusive disease showed no significant interhemispheric flow differences. Though non-significant, within patients lower CSO (p = 0.06) and BG (p = 0.11) flow velocity related to larger WMH volume. Our findings suggest that carotid occlusive disease may be associated with abnormal cerebral perforating artery flow and that this relates to SVD lesion burden in these patients, although our observations need corroboration in larger study populations.</p

    Non-invasive assessment of damping of blood flow velocity pulsatility in cerebral arteries with MRI

    Get PDF
    Background Damping of heartbeat-induced pressure pulsations occurs in large arteries such as the aorta and extends to the small arteries and microcirculation. Since recently, 7 T MRI enables investigation of damping in the small cerebral arteries. Purpose To investigate flow pulsatility damping between the first segment of the middle cerebral artery (M1) and the small perforating arteries using magnetic resonance imaging. Study Type Retrospective. Subjects Thirty-eight participants (45% female) aged above 50 without history of heart failure, carotid occlusive disease, or cognitive impairment. Field Strength/Sequence 3 T gradient echo (GE) T1-weighted images, spin-echo fluid-attenuated inversion recovery images, GE two-dimensional (2D) phase-contrast, and GE cine steady-state free precession images were acquired. At 7 T, T1-weighted images, GE quantitative-flow, and GE 2D phase-contrast images were acquired. Assessment Velocity pulsatilities of the M1 and perforating arteries in the basal ganglia (BG) and semi-oval center (CSO) were measured. We used the damping index between the M1 and perforating arteries as a damping indicator (velocity pulsatility(M1)/velocity pulsatility(CSO/BG)). Left ventricular stroke volume (LVSV), mean arterial pressure (MAP), pulse pressure (PP), and aortic pulse wave velocity (PWV) were correlated with velocity pulsatility in the M1 and in perforating arteries, and with the damping index of the CSO and BG. Statistical Tests Correlations of LVSV, MAP, PP, and PWV with velocity pulsatility in the M1 and small perforating arteries, and correlations with the damping indices were evaluated with linear regression analyses. Results PP and PWV were significantly positively correlated to M1 velocity pulsatility. PWV was significantly negatively correlated to CSO velocity pulsatility, and PP was unrelated to CSO velocity pulsatility (P = 0.28). PP and PWV were uncorrelated to BG velocity pulsatility (P = 0.25; P = 0.68). PWV and PP were significantly positively correlated with the CSO damping index. Data Conclusion Our study demonstrated a dynamic damping of velocity pulsatility between the M1 and small cerebral perforating arteries in relation to proximal stress. Level of Evidence 4 Technical Efficacy Stage 1Cardiovascular Aspects of Radiolog

    The Missing Link in the Pathophysiology of Vascular Cognitive Impairment: Design of the Heart-Brain Study

    Get PDF
    Background: Hemodynamic balance in the heart-brain axis is increasingly recognized as a crucial factor in maintaining functional and structural integrity of the brain and thereby cognitive functioning. Patients with heart failure (HF), carotid occlusive disease (COD), and vascular cognitive impairment (VCI) present themselves with complaints attributed to specific parts of the heart-brain axis, but hemodynamic changes often go beyond the part of the axis for which they primarily seek medical advice. The Heart-Brain Study hypothesizes that t

    Frequent Cognitive Impairment in Patients With Disorders Along the Heart-Brain Axis

    No full text
    Background and Purpose- Patients with cardiovascular disease are at increased risk for cognitive decline. We studied the occurrence and profile of cognitive impairment in 3 patient groups as exemplar conditions of hemodynamic disturbances at different levels of the heart-brain axis, including patients with heart failure (HF), carotid occlusive disease (COD), and patients with cognitive complaints and vascular brain injury on magnetic resonance imaging (possible vascular cognitive impairment [VCI]). Methods- In 555 participants (160 HF, 107 COD, 160 possible VCI, 128 reference participants; 68±9 years; 36% F; Mini-Mental State Examination 28±2), we assessed cognitive functioning with a comprehensive test battery. Test scores were transformed into z-scores. Compound z-scores were constructed for: memory, language, attention/psychomotor speed, executive functioning, and global cognitive functioning. We rated cognitive domains as impaired when z-score≤-1.5. Based on the number of impaired domains, patients were classified as cognitively normal, minor, or major cognitive impairment. We used general linear models and χ2 tests to compare cognitive functioning between patient groups and the reference group. Results- Age, sex, and education adjusted global cognitive functioning z-score was lower in patients with COD (β [SE]=-0.46 [0.10], P<0.001) and possible VCI (β [SE]=-0.80 [0.09], P<0.001) compared with reference participants. On all domains, z-scores were lower in patients with COD and possible VCI compared with reference participants. Patients with HF had lower z-scores on attention/speed and language compared with reference participants. Cognitive impairment was observed in 18% of HF, 36% of COD, and 45% possible VCI. There was no difference in profile of impaired cognitive domains between patient groups. Memory and attention-psychomotor speed were most commonly affected, followed by executive functioning and language. Conclusions- A substantial part of patients with HF and COD had cognitive impairment, which warrants vigilance for the occurrence of cognitive impairment. These results underline the importance of an integrative approach in medicine in patients presenting with disorders in the heart-brain axis

    Nonfocal Transient Neurological Attacks Are Associated With Cerebral Small Vessel Disease

    No full text
    Background and Purpose- Nonfocal transient neurological attacks (TNAs), such as unsteadiness, bilateral weakness, or confusion, are associated with an increased risk of stroke and dementia. Cerebral ischemia plays a role in their pathogenesis, but the precise mechanisms are unknown. We hypothesized that cerebral small vessel disease is involved in the pathogenesis of TNAs and assessed the relation between TNAs and manifestations of cerebral small vessel disease on magnetic resonance imaging. Methods- We included participants from the HBC (Heart-Brain Connection) study. In this study, hemodynamic and cardiovascular contributions to cognitive impairment have been studied in patients with heart failure, carotid artery occlusion, or possible vascular cognitive impairment, as well as in a reference group. We excluded participants with a history of stroke or transient ischemic attacks. The occurrence of the following 8 TNAs was assessed with a standardized interview: unconsciousness, confusion, amnesia, unsteadiness, bilateral leg weakness, blurred vision, nonrotatory dizziness, and paresthesias. The occurrence of TNAs was related to the presence of lacunes or white matter hyperintensities (Fazekas score, ≥2; early confluent or confluent lesions) in logistic regression analysis, adjusted for age, sex, and hypertension. Results- Of 304 participants (60% men; mean age, 67±9 years), 63 participants (21%) experienced ≥1 TNAs. Lacunes and early confluent or confluent white matter hyperintensities were more common in participants with TNAs than in participants without TNAs (35% versus 20%; adjusted odds ratio, 2.32 [95% CI, 1.22-4.40] and 48% versus 27%; adjusted odds ratio, 2.65 [95% CI, 1.44-4.90], respectively). Conclusions- In our study, TNAs are associated with the presence of lacunes and early confluent or confluent white matter hyperintensities of presumed vascular origin, which indicates that cerebral small vessel disease might play a role in the pathogenesis of TNAs

    Cerebral Perfusion and the Occurrence of Nonfocal Transient Neurological Attacks

    No full text
    INTRODUCTION: Nonfocal transient neurological attacks (TNAs) are associated with an increased risk of cardiac events, stroke and dementia. Their etiology is still unknown. Global cerebral hypoperfusion has been suggested to play a role in their etiology, but this has not been investigated. We assessed whether lower total brain perfusion is associated with a higher occurrence of TNAs. METHODS: Between 2015 and 2018, patients with heart failure were included in the Heart Brain Connection study. Patients underwent brain magnetic resonance imaging, including quantitative magnetic resonance angiography (QMRA) to measure cerebral blood flow (CBF). We calculated total brain perfusion of each participant by dividing total CBF by brain volume. Patients were interviewed with a standardized questionnaire on the occurrence of TNAs by physicians who were blinded to QMRA flow status. We assessed the relation between total brain perfusion and the occurrence of TNAs with Poisson regression analysis. RESULTS: Of 136 patients (mean age 70 years, 68% men), 29 (21%) experienced ≥1 TNAs. Nonrotatory dizziness was the most common subtype of TNA. Patients with TNAs were more often female and more often had angina pectoris than patients without TNAs, but total CBF and total brain perfusion were not different between both groups. Total brain perfusion was not associated with the occurrence of TNAs (adjusted risk ratio 1.12, 95% CI 0.88-1.42). CONCLUSION: We found no association between total brain perfusion and the occurrence of TNAs in patients with heart failure

    Cerebral cortical microinfarcts in patients with internal carotid artery occlusion

    No full text
    Cerebral cortical microinfarcts (CMI) are small ischemic lesions that are associated with cognitive impairment and probably have multiple etio

    Cerebral cortical microinfarcts:A novel MRI marker of vascular brain injury in patients with heart failure

    No full text
    Background: Patients with heart failure (HF) are at risk for vascular brain injury. Cerebral cortical microinfarcts (CMIs) are a novel MRI marker of vascular brain injury. This study aims to determine the occurrence of CMIs in patient with HF and their clinical correlates, including haemodynamic status.Methods: From the Heart-Brain Study, a multicenter prospective cohort study, 154 patients with clinically stable HF without concurrent atrial fibrillation (mean age 69.5 +/- 10.1, 32% female) and 124 reference participants without HF (mean age 65.6 +/- 7.4, 47% females) were evaluated for CMIs on 3 T MRI. CMI presence in HF was tested for associations with vascular risk profile, cardiac function and history, MRI markers of vascular brain injury and cognitive profile.Results: CMI occurrence was higher in patient with HF (17%) than reference participants (7%); after correction for age and sex OR 2.5 [95% CI 1.1-6.0] p=.032; after additional correction for vascular risk factors OR 2.7 [1.0-7.1] p=.052. In patients with HF, CMI presence was associated with office hypertension (OR 2.7 [1.2-6.5] p =.021) and a lower cardiac index (B = -0.29 [-0.55--0.04] p =.023 independent of vascular risk factors), but not with cause or duration of HF. Presence of CMIs was not associated with cognitive performance in patients with HF.Conclusions: CMIs are a common occurrence in patients with HF and related to an adverse vascular risk factor profile and severity of cardiac dysfunction. CMIs thus represent a novel marker of vascular brain injury in these patients. (c) 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Neuro Imaging Researc
    corecore