6 research outputs found

    A deimmunised form of the ribotoxin, α-sarcin, lacking CD4+ T cell epitopes and its use as an immunotoxin warhead

    Get PDF
    Fungal ribotoxins that block protein synthesis can be useful warheads in the context of a targeted immunotoxin. α-Sarcin is a small (17 kDa) fungal ribonuclease produced by Aspergillus giganteus that functions by catalytically cleaving a single phosphodiester bond in the sarcin–ricin loop of the large ribosomal subunit, thus making the ribosome unrecognisable to elongation factors and leading to inhibition of protein synthesis. Peptide mapping using an ex vivo human T cell assay determined that α-sarcin contained two T cell epitopes; one in the N-terminal 20 amino acids and the other in the C-terminal 20 amino acids. Various mutations were tested individually within each epitope and then in combination to isolate deimmunised α-sarcin variants that had the desired properties of silencing T cell epitopes and retention of the ability to inhibit protein synthesis (equivalent to wild-type, WT α-sarcin). A deimmunised variant (D9T/Q142T) demonstrated a complete lack of T cell activation in in vitro whole protein human T cell assays using peripheral blood mononuclear cells from donors with diverse HLA allotypes. Generation of an immunotoxin by fusion of the D9T/Q142T variant to a single-chain Fv targeting Her2 demonstrated potent cell killing equivalent to a fusion protein comprising the WT α-sarcin. These results represent the first fungal ribotoxin to be deimmunised with the potential to construct a new generation of deimmunised immunotoxin therapeutics

    Mutant Escherichia coli Heat-Labile Toxin B Subunit That Separates Toxoid-Mediated Signaling and Immunomodulatory Action from Trafficking and Delivery Functions

    No full text
    The homopentameric B-subunit components of Escherichia coli heat-labile enterotoxin (EtxB) and cholera toxin (CtxB) possess the capacity to enter mammalian cells and to activate cell-signaling events in leukocytes that modulate immune cell function. Both properties have been attributed to the ability of the B subunits to bind to GM1-ganglioside receptors, a ubiquitous glycosphingolipid found in the plasma membrane. Here we describe the properties of EtxB(H57S), a mutant B subunit with a His→Ser substitution at position 57. The mutant was found to be severely defective in inducing leukocyte signaling, as shown by failure to (i) trigger caspase 3-mediated CD8(+)-T-cell apoptosis, (ii) activate nuclear translocation of NF-κB in Jurkat T cells, (iii) induce a potent anti-B-subunit response in mice, or (iv) serve as a mucosal adjuvant. However, its GM1 binding, cellular uptake, and delivery functions remained intact. This was further validated by the finding that EtxB(H57S) was as effective as EtxB in delivering a conjugated model class I epitope into the major histocompatibility complex class I pathway of a dendritic cell line. These observations imply that GM1 binding alone is not sufficient to trigger the signaling events responsible for the potent immunomodulatory properties of EtxB. Moreover, they demonstrate that its signaling properties play no role in EtxB uptake and trafficking. Thus, EtxB(H57S) represents a novel tool for evaluating the complex cellular interactions and signaling events occurring after receptor interaction, as well as offering an alternative means of delivering attached peptides in the absence of the potent immunomodulatory signals induced by wild-type B subunits
    corecore