554 research outputs found

    Interfacial Studies in Semiconductor Heterostructures by X-Ray Diffraction Techniques

    Get PDF
    X-ray radiation is a non-destructive probe well suited to assess structural perfection of semiconductor material. Three techniques are used to study the interfacial roughness, period fluctuations and annealing-induced interdiffusion in various superlattice structures. Reflectivity of long period Si/Si1-xGex multiple quantum wells reveals an asymmetry oriented along the direction of miscut in the interface roughness with the Si1-xGex to Si interfaces being about twice as rough (0.5 versus 0.3 nm) as the Si to Si1-xGex interfaces. For Si-Si0.65Ge0.35 multiple quantum wells, diffuse scattering is minimal for a growth temperature of 550°C and increases substantially at very low (250°C) or high (750°C) growth temperatures. In (SimGen)p short period superlattices, the X-ray reflectivity data are consistent with interfacial mixing over about two monolayers and thickness fluctuations of about 5% vertically in the structures. For superlattices grown on vicinal surfaces, the roughness spectrum is correlated with the surface miscut orientation. Double-crystal X-ray diffraction using symmetrical and asymmetrical reflections has been used to study epitaxial lattice distortion and strain relaxation in InGaAs/GaAs heterostructures grown on (100) on-orientation and 2° off (100) GaAs surfaces. It is shown that thick InGaAs films retain an appreciable fraction of their initial strain and that their crystal lattice is triclinically distorted. The magnitude of the deformation is larger when growth is carried out on a vicinal surface

    Strong subadditivity and the covariant holographic entanglement entropy formula

    Full text link
    Headrick and Takayanagi showed that the Ryu-Takayanagi holographic entanglement entropy formula generally obeys the strong subadditivity (SSA) inequality, a fundamental property of entropy. However, the Ryu-Takayanagi formula only applies when the bulk spacetime is static. It is not known whether the covariant generalization proposed by Hubeny, Rangamani, and Takayanagi (HRT) also obeys SSA. We investigate this question in three-dimensional AdS-Vaidya spacetimes, finding that SSA is obeyed as long as the bulk spacetime satisfies the null energy condition. This provides strong support for the validity of the HRT formula.Comment: 38 page

    Pressure-dependent transition from atoms to nanoparticles in magnetron sputtering: Effect on WSi2 film roughness and stress

    Full text link
    We report on the transition between two regimes from several-atom clusters to much larger nanoparticles in Ar magnetron sputter deposition of WSi2, and the effect of nanoparticles on the properties of amorphous thin films and multilayers. Sputter deposition of thin films is monitored by in situ x-ray scattering, including x-ray reflectivity and grazing incidence small angle x-ray scattering. The results show an abrupt transition at an Ar background pressure Pc; the transition is associated with the threshold for energetic particle thermalization, which is known to scale as the product of the Ar pressure and the working distance between the magnetron source and the substrate surface. Below Pc smooth films are produced, while above Pc roughness increases abruptly, consistent with a model in which particles aggregate in the deposition flux before reaching the growth surface. The results from WSi2 films are correlated with in situ measurement of stress in WSi2/Si multilayers, which exhibits a corresponding transition from compressive to tensile stress at Pc. The tensile stress is attributed to coalescence of nanoparticles and the elimination of nano-voids.Comment: 16 pages, 10 figures; v3: published versio

    The Simplicial Ricci Tensor

    Full text link
    The Ricci tensor (Ric) is fundamental to Einstein's geometric theory of gravitation. The 3-dimensional Ric of a spacelike surface vanishes at the moment of time symmetry for vacuum spacetimes. The 4-dimensional Ric is the Einstein tensor for such spacetimes. More recently the Ric was used by Hamilton to define a non-linear, diffusive Ricci flow (RF) that was fundamental to Perelman's proof of the Poincare conjecture. Analytic applications of RF can be found in many fields including general relativity and mathematics. Numerically it has been applied broadly to communication networks, medical physics, computer design and more. In this paper, we use Regge calculus (RC) to provide the first geometric discretization of the Ric. This result is fundamental for higher-dimensional generalizations of discrete RF. We construct this tensor on both the simplicial lattice and its dual and prove their equivalence. We show that the Ric is an edge-based weighted average of deficit divided by an edge-based weighted average of dual area -- an expression similar to the vertex-based weighted average of the scalar curvature reported recently. We use this Ric in a third and independent geometric derivation of the RC Einstein tensor in arbitrary dimension.Comment: 19 pages, 2 figure

    Ricci flow and black holes

    Get PDF
    Gradient flow in a potential energy (or Euclidean action) landscape provides a natural set of paths connecting different saddle points. We apply this method to General Relativity, where gradient flow is Ricci flow, and focus on the example of 4-dimensional Euclidean gravity with boundary S^1 x S^2, representing the canonical ensemble for gravity in a box. At high temperature the action has three saddle points: hot flat space and a large and small black hole. Adding a time direction, these also give static 5-dimensional Kaluza-Klein solutions, whose potential energy equals the 4-dimensional action. The small black hole has a Gross-Perry-Yaffe-type negative mode, and is therefore unstable under Ricci flow. We numerically simulate the two flows seeded by this mode, finding that they lead to the large black hole and to hot flat space respectively, in the latter case via a topology-changing singularity. In the context of string theory these flows are world-sheet renormalization group trajectories. We also use them to construct a novel free energy diagram for the canonical ensemble.Comment: 31 pages, 14 color figures. v2: Discussion of the metric on the space of metrics corrected and expanded, references adde

    Numerical solution to the hermitian Yang-Mills equation on the Fermat quintic

    Full text link
    We develop an iterative method for finding solutions to the hermitian Yang-Mills equation on stable holomorphic vector bundles, following ideas recently developed by Donaldson. As illustrations, we construct numerically the hermitian Einstein metrics on the tangent bundle and a rank three vector bundle on P^2. In addition, we find a hermitian Yang-Mills connection on a stable rank three vector bundle on the Fermat quintic.Comment: 25 pages, 2 figure

    Influence of Annealing on the Interface Structure and Strain Relief in Si/Ge Heterostructures on (100) Si

    Get PDF
    Research work on the general problem of the nature and thermal stability of the Si/Ge semiconductor interface is reviewed. We report on our recent studies of the interface structure in [(Si)m(Ge)n]p superlattices and (Ge)n layers buried in Si as revealed by Raman scattering, extended X-ray absorption fine structure, and X-ray techniques. Strain relaxation and interdiffusion in the superlattices caused by annealing have been investigated, and it is found that considerable strain-enhanced intermixing together with partial relaxation of Ge-Ge bonds occurs even for very short anneal times at 700°C. Further annealing leads to diffusion at a much slower rate and to the eventual formation of an alloy layer. The Ge-Ge bond lengths in as-grown samples are that expected for a fully strained Ge layer. Similar studies of the (Ge)n layers reveal that two-dimensional pseudomorphic growth proceeds up to n = 5, probably mediated by a Si-Ge interface interdiffusion over one or two monolayers of approximately 20%. A n = 12 layer gave evidence of strain relaxation by the introduction of dislocations and clustering. Interdiffusion proceeds rapidly on annealing at 750°C

    Investigating Off-shell Stability of Anti-de Sitter Space in String Theory

    Full text link
    We propose an investigation of stability of vacua in string theory by studying their stability with respect to a (suitable) world-sheet renormalization group (RG) flow. We prove geometric stability of (Euclidean) anti-de Sitter (AdS) space (i.e., Hn\mathbf{H}^n) with respect to the simplest RG flow in closed string theory, the Ricci flow. AdS space is not a fixed point of Ricci flow. We therefore choose an appropriate flow for which it is a fixed point, prove a linear stability result for AdS space with respect to this flow, and then show this implies its geometric stability with respect to Ricci flow. The techniques used can be generalized to RG flows involving other fields. We also discuss tools from the mathematics of geometric flows that can be used to study stability of string vacua.Comment: 29 pages, references added in this version to appear in Classical and Quantum Gravit

    Transport and Photo-Conduction in Carbon Nanotube Fibers

    Full text link
    We have characterized the conductivity of carbon nanotubes (CNT) fibers enriched in semiconducting species as a function of temperature and pulsed laser irradiation of 266 nm wavelength. While at high temperatures the response approaches an Arrhenius law behavior, from room temperature down to 4.2 K the response can be framed, quantitatively, within the predictions of the fluctuation induced tunneling which occurs between the inner fibrils (bundles) of the samples and/or the elementary CNTs constituting the fibers. Laser irradiation induces an enhancement of the conductivity, and analysis of the resulting data confirms the (exponential) dependence of the potential barrier upon temperature as expected from the fluctuation induced tunneling model. A thermal map of the experimental configuration consisting of laser-irradiated fibers is also obtained via COMSOL simulations in order to rule out bare heating phenomena as the background of our experiments. (*) AuthorComment: 13 pages and 7 figure
    corecore