208 research outputs found

    Papers in Philippine Linguistics No. 6

    Get PDF

    The behavioral responses of a nocturnal burrowing marsupial (Lasiorhinus latifrons) to drone flight

    Get PDF
    The use of drones in wildlife research and management is increasing. Recent evidence has demonstrated the impact of drones on animal behavior, but the response of nocturnal animals to drone flight remains unknown. Utilizing a lightweight commercial drone, the behavioral response of southern hairy-nosed wombats (Lasiorhinus latifrons) to drone flights was observed at Kooloola Station, Swan Reach, South Australia. All wombats flown over during both day and night flights responded behaviorally to the presence of drones. The response differed based on time of day. The most common night-time behavior elicited by drone flight was retreat, compared to stationary alertness behavior observed for daytime drone flights. The behavioral response of the wombats increased as flight altitude decreased. The marked difference of behavior between day and night indicates that this has implications for studies using drones. The behavior observed during flights was altered due to the presence of the drone, and therefore, shrewd study design is important (i.e., acclimation period to drone flight). Considering the sensory adaptations of the target species and how this may impact its behavioral response when flying at night is essential.Taylor Headland, Bertram Ostendorf, David Taggar

    Gratingless integrated tunneling multiplexer for terahertz waves

    Get PDF
    The arrayed waveguide grating (AWG) is a versatile and scalable passive photonic multiplexer that sees widespread usage. However, the necessity of a waveguide array engenders large device size, and gratings invariably commute finite power into undesired diffraction orders. Here, we demonstrate AWG-like functionality without a grating or waveguide array, yielding benefits to compactness, bandwidth, and efficiency. To this end, we exploit optical tunneling from a dielectric waveguide to an adjacent slab in order to realize a slab-confined frequency-scanning beam, which is manipulated using in-slab beamforming techniques that we have developed in order to separate distinct frequency bands. In this way, we devise an all-intrinsic-silicon integrated 4×1 frequency-division terahertz multiplexer, which is shown to support aggregate data rates up to 48 Gbit/s with an on–off-keying modulation scheme, operating in the vicinity of 350 GHz. Our investigation targets the terahertz range, to provide a critical missing building block for future high-volume wireless communications networks.Daniel Headland, Withawat Withayachumnankul, Masayuki Fujita and Tadao Nagatsum

    “An ethnographic seduction”: how qualitative research and Agent-based models can benefit each other

    Get PDF
    We provide a general analytical framework for empirically informed agent-based simulations. This methodology provides present-day agent-based models with a sound and proper insight as to the behavior of social agents — an insight that statistical data often fall short of providing at least at a micro level and for hidden and sensitive populations. In the other direction, simulations can provide qualitative researchers in sociology, anthropology and other fields with valuable tools for: (a) testing the consistency and pushing the boundaries, of specific theoretical frameworks; (b) replicating and generalizing results; (c) providing a platform for cross-disciplinary validation of results

    Terahertz integration platforms using substrateless all-silicon microstructures

    Get PDF
    The absence of a suitable standard device platform for terahertz waves is currently a major roadblock that is inhibiting the widespread adoption and exploitation of terahertz technology. As a consequence, terahertz-range devices and systems are generally an ad hoc combination of several different heterogeneous technologies and fields of study, which serves perfectly well for a once-off experimental demonstration or proof-of-concept, but is not readily adapted to real-world use case scenarios. In contrast, establishing a common platform would allow us to consolidate our design efforts, define a well-defined scope of specialization for “terahertz engineering,” and to finally move beyond the disconnected efforts that have characterized the past decades. This tutorial will present arguments that nominate substrateless all-silicon microstructures as the most promising candidate due to the low loss of high-resistivity float-zone intrinsic silicon, the compactness of high-contrast dielectric waveguides, the designability of lattice structures, such as effective medium and photonic crystal, physical rigidity, ease and low cost of manufacture using deep-reactive ion etching, and the versatility of the many diverse functional devices and systems that may be integrated. We will present an overview of the historical development of the various constituents of this technology, compare and contrast different approaches in detail, and briefly describe relevant aspects of electromagnetic theory, which we hope will be of assistance.Daniel Headland, Masayuki Fujita, Guillermo Carpintero, Tadao Nagatsuma, and Withawat Withayachumnank

    Demonstration of a highly efficient terahertz flat lens employing tri-layer metasurfaces

    Get PDF
    Published 1 May 2017We demonstrate a terahertz flat lens based on tri-layer metasurfaces allowing for broadband linear polarization conversion, where the phase can be tuned through a full 2π range by tailoring the geometry of the subwavelength resonators. The lens functionality is realized by arranging these resonators to create a parabolic spatial phase profile. The fabricated 124-ÎŒm-thick device is characterized by scanning the beam profile and cross section, showing diffraction-limited focusing and ∌68% overall efficiency at the operating frequency of 400 GHz. This device has potential for applications in terahertz imaging and communications, as well as beam control in general.Chun-Chieh Chang, Daniel Headland, Derek Abbott, Withawat Withayachumnankul, and Hou-Tong Che

    Anthropology and GIS: Temporal and Spatial Distribution of the Philippine Negrito Groups

    Get PDF
    The Philippine negrito groups comprise a diverse group of populations speaking over 30 different languages, who are spread all over the archipelago, mostly in marginal areas of Luzon Island in the north, the central Visayas islands, and Mindanao in the south. They exhibit physical characteristics that are different from more than 100 Philippine ethnolinguistic groups that are categorized as non-negritos. Given their numbers, it is not surprising that Philippine negritos make up a major category in a number of general ethnographic maps produced since the nineteenth century. Reports from various ethnological surveys during this period, however, have further enriched our understanding regarding the extent and distribution of negrito populations. Using the data contained in these reports, it is possible to plot and create a map showing the historical locations and distribution of negrito groups. Using geographic information systems (GIS), the location and distribution of negrito groups at any given time can be overlaid on historical or current maps. In the present study, a GIS layer was compiled and extracted from the 2000 Philippine Census of population at the village level and overlaid on existing maps of the Philippines. The maps that were generated from this project will complement ongoing anthropological and genetic studies of negrito groups that inhabit different locations within the Philippine archipelago

    Insulator-metal transition in substrate-independent VO(2) thin film for phase-change devices

    Get PDF
    Vanadium has 11 oxide phases, with the binary VO2 presenting stimuli-dependent phase transitions that manifest as switchable electronic and optical features. An elevated temperature induces an insulator-to-metal transition (IMT) as the crystal reorients from a monoclinic state (insulator) to a tetragonal arrangement (metallic). This transition is accompanied by a simultaneous change in optical properties making VO2 a versatile optoelectronic material. However, its deployment in scalable devices suffers because of the requirement of specialised substrates to retain the functionality of the material. Sensitivity to oxygen concentration and larger-scale VO2 synthesis have also been standing issues in VO2 fabrication. Here, we address these major challenges in harnessing the functionality in VO2 by demonstrating an approach that enables crystalline, switchable VO2 on any substrate. Glass, silicon, and quartz are used as model platforms to show the effectiveness of the process. Temperature-dependent electrical and optical characterisation is used demonstrating three to four orders of magnitude in resistive switching, >60% chromic discrimination at infrared wavelengths, and terahertz property extraction. This capability will significantly broaden the horizon of applications that have been envisioned but remained unrealised due to the lack of ability to realise VO2 on any substrate, thereby exploiting its untapped potential.Mohammad Taha, Sumeet Walia, Taimur Ahmed, Daniel Headland, Withawat Withayachumnankul, Sharath Sriram and Madhu Bhaskara

    Insulator-metal transition in substrate-independent VO2thin film for phase-change devices

    Get PDF
    Vanadium has 11 oxide phases, with the binary VO 2 presenting stimuli-dependent phase transitions that manifest as switchable electronic and optical features. An elevated temperature induces an insulator-to-metal transition (IMT) as the crystal reorients from a monoclinic state (insulator) to a tetragonal arrangement (metallic). This transition is accompanied by a simultaneous change in optical properties making VO 2 a versatile optoelectronic material. However, its deployment in scalable devices suffers because of the requirement of specialised substrates to retain the functionality of the material. Sensitivity to oxygen concentration and larger-scale VO 2 synthesis have also been standing issues in VO 2 fabrication. Here, we address these major challenges in harnessing the functionality in VO 2 by demonstrating an approach that enables crystalline, switchable VO 2 on any substrate. Glass, silicon, and quartz are used as model platforms to show the effectiveness of the process. Temperature-dependent electrical and optical characterisation is used demonstrating three to four orders of magnitude in resistive switching, > 60% chromic discrimination at infrared wavelengths, and terahertz property extraction. This capability will significantly broaden the horizon of applications that have been envisioned but remained unrealised due to the lack of ability to realise VO 2 on any substrate, thereby exploiting its untapped potential
    • 

    corecore