81,370 research outputs found

    (13)C NMR investigation of the superconductor MgCNi_3 up to 800K

    Full text link
    We report (13)C NMR characterization of the new superconductor MgCNi_3 (He et al., Nature (411), 54 (2001)). We found that both the uniform spin susceptibility and the spin fluctuations show a strong enhancement with decreasing temperature, and saturate below ~50K and ~20K respectively. The nuclear spin-lattice relaxation rate 1/(13)T_1T exhibits typical behaviour for isotropic s-wave superconductivity with a coherence peak below Tc=7.0K that grows with decreasing magnetic field.Comment: Accepted for publication in Physical Review Letter

    A Template for Implementing Fast Lock-free Trees Using HTM

    Full text link
    Algorithms that use hardware transactional memory (HTM) must provide a software-only fallback path to guarantee progress. The design of the fallback path can have a profound impact on performance. If the fallback path is allowed to run concurrently with hardware transactions, then hardware transactions must be instrumented, adding significant overhead. Otherwise, hardware transactions must wait for any processes on the fallback path, causing concurrency bottlenecks, or move to the fallback path. We introduce an approach that combines the best of both worlds. The key idea is to use three execution paths: an HTM fast path, an HTM middle path, and a software fallback path, such that the middle path can run concurrently with each of the other two. The fast path and fallback path do not run concurrently, so the fast path incurs no instrumentation overhead. Furthermore, fast path transactions can move to the middle path instead of waiting or moving to the software path. We demonstrate our approach by producing an accelerated version of the tree update template of Brown et al., which can be used to implement fast lock-free data structures based on down-trees. We used the accelerated template to implement two lock-free trees: a binary search tree (BST), and an (a,b)-tree (a generalization of a B-tree). Experiments show that, with 72 concurrent processes, our accelerated (a,b)-tree performs between 4.0x and 4.2x as many operations per second as an implementation obtained using the original tree update template

    Higgs triplets at like-sign linear colliders and neutrino mixing

    Full text link
    We study the phenomenology of the type-II seesaw model at a linear e^-e^- collider. We show that the process e^-e^- \rightarrow alpha^-beta^- (alpha, beta = e, mu, tau being charged leptons) mediated by a doubly charged scalar is very sensitive to the neutrino parameters, in particular the absolute neutrino mass scale and the Majorana CP-violating phases. We identify the regions in parameter space in which appreciable collider signatures in the channel with two like-sign muons in the final state are possible. This includes Higgs triplet masses beyond the reach of the LHC.Comment: 8 pages, 6 figure

    Pomeranchuk effect and spin-gradient cooling of Bose-Bose mixtures in an optical lattice

    Full text link
    We theoretically investigate finite-temperature thermodynamics and demagnetization cooling of two-component Bose-Bose mixtures in a cubic optical lattice, by using bosonic dynamical mean field theory (BDMFT). We calculate the finite-temperature phase diagram, and remarkably find that the system can be heated from the superfluid into the Mott insulator at low temperature, analogous to the Pomeranchuk effect in 3He. This provides a promising many-body cooling technique. We examine the entropy distribution in the trapped system and discuss its dependence on temperature and an applied magnetic field gradient. Our numerical simulations quantitatively validate the spin-gradient demagnetization cooling scheme proposed in recent experiments.Comment: 9 pages, 8 figure

    Suppressing longitudinal double-layer oscillations by using elliptically polarized laser pulses in the hole-boring radiation pressure acceleration regime

    Full text link
    It is shown that well collimated mono-energetic ion beams with a large particle number can be generated in the hole-boring radiation pressure acceleration regime by using an elliptically polarized laser pulse with appropriate theoretically determined laser polarization ratio. Due to the J×B\bm{J}\times\bm{B} effect, the double-layer charge separation region is imbued with hot electrons that prevent ion pileup, thus suppressing the double-layer oscillations. The proposed mechanism is well confirmed by Particle-in-Cell simulations, and after suppressing the longitudinal double-layer oscillations, the ion beams driven by the elliptically polarized lasers own much better energy spectrum than those by circularly polarized lasers.Comment: 6 pages, 5 figures, Phys. Plasmas (2013) accepte
    • …
    corecore