191,132 research outputs found

    Centers and Cocenters of 00-Hecke algebras

    Full text link
    In this paper, we give explicit descriptions of the centers and cocenters of 00-Hecke algebras associated to finite Coxeter groups.Comment: 13 pages, a mistake in 4.2 is correcte

    Высшее образование в Китае и России: сходство и отличие

    Full text link
    В статье дана сравнительная характеристика высшего образования в странах Китай и Россия.The article gives a comparative description of higher education in China and Russia

    S-OHEM: Stratified Online Hard Example Mining for Object Detection

    Full text link
    One of the major challenges in object detection is to propose detectors with highly accurate localization of objects. The online sampling of high-loss region proposals (hard examples) uses the multitask loss with equal weight settings across all loss types (e.g, classification and localization, rigid and non-rigid categories) and ignores the influence of different loss distributions throughout the training process, which we find essential to the training efficacy. In this paper, we present the Stratified Online Hard Example Mining (S-OHEM) algorithm for training higher efficiency and accuracy detectors. S-OHEM exploits OHEM with stratified sampling, a widely-adopted sampling technique, to choose the training examples according to this influence during hard example mining, and thus enhance the performance of object detectors. We show through systematic experiments that S-OHEM yields an average precision (AP) improvement of 0.5% on rigid categories of PASCAL VOC 2007 for both the IoU threshold of 0.6 and 0.7. For KITTI 2012, both results of the same metric are 1.6%. Regarding the mean average precision (mAP), a relative increase of 0.3% and 0.5% (1% and 0.5%) is observed for VOC07 (KITTI12) using the same set of IoU threshold. Also, S-OHEM is easy to integrate with existing region-based detectors and is capable of acting with post-recognition level regressors.Comment: 9 pages, 3 figures, accepted by CCCV 201

    Sparse Representation-based Open Set Recognition

    Full text link
    We propose a generalized Sparse Representation- based Classification (SRC) algorithm for open set recognition where not all classes presented during testing are known during training. The SRC algorithm uses class reconstruction errors for classification. As most of the discriminative information for open set recognition is hidden in the tail part of the matched and sum of non-matched reconstruction error distributions, we model the tail of those two error distributions using the statistical Extreme Value Theory (EVT). Then we simplify the open set recognition problem into a set of hypothesis testing problems. The confidence scores corresponding to the tail distributions of a novel test sample are then fused to determine its identity. The effectiveness of the proposed method is demonstrated using four publicly available image and object classification datasets and it is shown that this method can perform significantly better than many competitive open set recognition algorithms. Code is public available: https://github.com/hezhangsprinter/SROS

    On Recommendation of Learning Objects using Felder-Silverman Learning Style Model

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The e-learning recommender system in learning institutions is increasingly becoming the preferred mode of delivery, as it enables learning anytime, anywhere. However, delivering personalised course learning objects based on learner preferences is still a challenge. Current mainstream recommendation algorithms, such as the Collaborative Filtering (CF) and Content-Based Filtering (CBF), deal with only two types of entities, namely users and items with their ratings. However, these methods do not pay attention to student preferences, such as learning styles, which are especially important for the accuracy of course learning objects prediction or recommendation. Moreover, several recommendation techniques experience cold-start and rating sparsity problems. To address the challenge of improving the quality of recommender systems, in this paper a novel recommender algorithm for machine learning is proposed, which combines students actual rating with their learning styles to recommend Top-N course learning objects (LOs). Various recommendation techniques are considered in an experimental study investigating the best technique to use in predicting student ratings for e-learning recommender systems. We use the Felder-Silverman Learning Styles Model (FSLSM) to represent both the student learning styles and the learning object profiles. The predicted rating has been compared with the actual student rating. This approach has been experimented on 80 students for an online course created in the MOODLE Learning Management System, while the evaluation of the experiments has been performed with the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). The results of the experiment verify that the proposed approach provides a higher prediction rating and significantly increases the accuracy of the recommendation
    corecore