78,132 research outputs found

    Tuning electronic structure of graphene via tailoring structure: theoretical study

    Full text link
    Electronic structures of graphene sheet with different defective patterns are investigated, based on the first principles calculations. We find that defective patterns can tune the electronic structures of the graphene significantly. Triangle patterns give rise to strongly localized states near the Fermi level, and hexagonal patterns open up band gaps in the systems. In addition, rectangular patterns, which feature networks of graphene nanoribbons with either zigzag or armchair edges, exhibit semiconducting behaviors, where the band gap has an evident dependence on the width of the nanoribbons. For the networks of the graphene nanoribbons, some special channels for electronic transport are predicted.Comment: 5 figures, 6 page

    New Parametrization of Neutrino Mixing Matrix

    Full text link
    Global fits to neutrino oscillation data are compatible with tri-bimaximal mixing pattern, which predicts θ23=π4,θ12=sin1(13)\theta_{23} = \frac{\pi}{4}, \theta_{12} = \sin^{-1} (\frac{1}{\sqrt{3}}) and θ13=0\theta_{13} = 0. We propose here to parametrize the tri-bimaximal mixing matrix VTBMV_{TBM} by its hermitian generator HTBMH_{TBM} using the exponential map. Then we use the exponential map to express the deviations from tri-bimaximal pattern by deriving the hermitian matrices Hz=0H_{z=0} and H1H_1. These deviations might come from the symmetry breaking of the neutrino and charged lepton sectors.Comment: 10 pages, no figures, correted minor typo

    Extrinsic models for the dielectric response of CaCu{3}Ti{4}O{12}

    Full text link
    The large, temperature-independent, low-frequency dielectric constant recently observed in single-crystal CaCu{3}Ti{4}O{12} is most plausibly interpreted as arising from spatial inhomogenities of its local dielectric response. Probable sources of inhomogeneity are the various domain boundaries endemic in such materials: twin, Ca-ordering, and antiphase boundaries. The material in and neighboring such boundaries can be insulating or conducting. We construct a decision tree for the resulting six possible morphologies, and derive or present expressions for the dielectric constant for models of each morphology. We conclude that all six morphologies can yield dielectric behavior consistent with observations and suggest further experiments to distinguish among them.Comment: 9 pages, with 1 postscript figure embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/mc_ext/index.htm

    Mathematical control of complex systems 2013

    Get PDF
    Mathematical control of complex systems have already become an ideal research area for control engineers, mathematicians, computer scientists, and biologists to understand, manage, analyze, and interpret functional information/dynamical behaviours from real-world complex dynamical systems, such as communication systems, process control, environmental systems, intelligent manufacturing systems, transportation systems, and structural systems. This special issue aims to bring together the latest/innovative knowledge and advances in mathematics for handling complex systems. Topics include, but are not limited to the following: control systems theory (behavioural systems, networked control systems, delay systems, distributed systems, infinite-dimensional systems, and positive systems); networked control (channel capacity constraints, control over communication networks, distributed filtering and control, information theory and control, and sensor networks); and stochastic systems (nonlinear filtering, nonparametric methods, particle filtering, partial identification, stochastic control, stochastic realization, system identification)

    Filamentary superconductivity across the phase diagram of Ba(Fe,Co)2_2As2_2

    Full text link
    We show magnetotransport results on Ba(Fe1x_{1-x}Cox_x)2_2As2_2 (0.0x0.130.0 \leq x \leq 0.13) single crystals. We identify the low temperature resistance step at 23 K in the parent compound with the onset of filamentary superconductivity (FLSC), which is suppressed by an applied magnetic field in a similar manner to the suppression of bulk superconductivity (SC) in doped samples. FLSC is found to persist across the phase diagram until the long range antiferromagnetic order is completely suppressed. A significant suppression of FLSC occurs for 0.02<x<0.040.02<x<0.04, the doping concentration where bulk SC emerges. Based on these results and the recent report of an electronic anisotropy maximum for 0.02 x\leq x \leq 0.04 [Science 329, 824 (2010)], we speculate that, besides spin fluctuations, orbital fluctuations may also play an important role in the emergence of SC in iron-based superconductors.Comment: 5 pages, 3 figure
    corecore