79,735 research outputs found
Dose and time response of ruminally infused algae on rumen fermentation characteristics, biohydrogenation and Butyrivibrio group bacteria in goats
Background: Micro-algae could inhibit the complete rumen BH of dietary 18-carbon unsaturated fatty acid (UFAs). This study aimed to examine dose and time responses of algae supplementation on rumen fermentation, biohydrogenation and Butyrivibrio group bacteria in goats.
Methods: Six goats were used in a repeated 3 x 3 Latin square design, and offered a fixed diet. Algae were infused through rumen cannule with 0 (Control), 6.1 (L-Alg), or 18.3 g (H-Alg) per day. Rumen contents were sampled on d 0, 3, 7, 14 and 20.
Results: H-Alg reduced total volatile fatty acid concentration and acetate molar proportion (P 0.10), while H-Alg reduced the total bacteria abundance (P < 0.05). However, this was induced by a significant difference between control and H-Alg on d 14 (-4.43 %). Afterwards, both treatments did not differ as increased variation in the H-Alg repetitions, with in some cases a return of the bacterial abundance to the basal level (d 0).
Conclusions: Changes in rumen fermentation and 18-carbon UFAs metabolism in response to algae were related to the supplementation level, but there was no evidence of shift in ruminal biohydrogenation pathways towards t10-18:1. L-Alg mainly induced a transient effect on rumen biohydrogenation of 18-carbon UFAs, while H-Alg showed an acute inhibition and these effects were not associated with the known hydrogenating bacteria
Miniaturized Resonator and Bandpass Filter for Silicon-Based Monolithic Microwave and Millimeter-Wave Integrated Circuits
© 2018 IEEE. © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.This paper introduces a unique approach for the implementation of a miniaturized on-chip resonator and its application for the first-order bandpass filter (BPF) design. This approach utilizes a combination of a broadside-coupling technique and a split-ring structure. To fully understand the principle behind it, simplified LC equivalent-circuit models are provided. By analyzing these models, guidelines for implementation of an ultra-compact resonator and a BPF are given. To further demonstrate the feasibility of using this approach in practice, both the implemented resonator and the filter are fabricated in a standard 0.13-μm (Bi)-CMOS technology. The measured results show that the resonator can generate a resonance at 66.75 GHz, while the BPF has a center frequency at 40 GHz and an insertion loss of 1.7 dB. The chip size of both the resonator and the BPF, excluding the pads, is only 0.012mm 2 (0.08 × 0.144 mm 2).Peer reviewe
- …