185 research outputs found

    Balanced Quantization: An Effective and Efficient Approach to Quantized Neural Networks

    Full text link
    Quantized Neural Networks (QNNs), which use low bitwidth numbers for representing parameters and performing computations, have been proposed to reduce the computation complexity, storage size and memory usage. In QNNs, parameters and activations are uniformly quantized, such that the multiplications and additions can be accelerated by bitwise operations. However, distributions of parameters in Neural Networks are often imbalanced, such that the uniform quantization determined from extremal values may under utilize available bitwidth. In this paper, we propose a novel quantization method that can ensure the balance of distributions of quantized values. Our method first recursively partitions the parameters by percentiles into balanced bins, and then applies uniform quantization. We also introduce computationally cheaper approximations of percentiles to reduce the computation overhead introduced. Overall, our method improves the prediction accuracies of QNNs without introducing extra computation during inference, has negligible impact on training speed, and is applicable to both Convolutional Neural Networks and Recurrent Neural Networks. Experiments on standard datasets including ImageNet and Penn Treebank confirm the effectiveness of our method. On ImageNet, the top-5 error rate of our 4-bit quantized GoogLeNet model is 12.7\%, which is superior to the state-of-the-arts of QNNs

    Covariance Regression with High-Dimensional Predictors

    Full text link
    In the high-dimensional landscape, addressing the challenges of covariance regression with high-dimensional covariates has posed difficulties for conventional methodologies. This paper addresses these hurdles by presenting a novel approach for high-dimensional inference with covariance matrix outcomes. The proposed methodology is illustrated through its application in elucidating brain coactivation patterns observed in functional magnetic resonance imaging (fMRI) experiments and unraveling complex associations within anatomical connections between brain regions identified through diffusion tensor imaging (DTI). In the pursuit of dependable statistical inference, we introduce an integrative approach based on penalized estimation. This approach combines data splitting, variable selection, aggregation of low-dimensional estimators, and robust variance estimation. It enables the construction of reliable confidence intervals for covariate coefficients, supported by theoretical confidence levels under specified conditions, where asymptotic distributions are provided. Through various types of simulation studies, the proposed approach performs well for covariance regression in the presence of high-dimensional covariates. This innovative approach is applied to the Lifespan Human Connectome Project (HCP) Aging Study, which aims to uncover a typical aging trajectory and variations in the brain connectome among mature and older adults. The proposed approach effectively identifies brain networks and associated predictors of white matter integrity, aligning with established knowledge of the human brain

    Urban Rail Substation Parameter Optimization by Energy Audit and Modified Salp Swarm Algorithm

    Get PDF

    High-resolution transcriptional and morphogenetic profiling of cells from micropatterned human ESC gastruloid cultures

    Get PDF
    During mammalian gastrulation, germ layers arise and are shaped into the body plan while extraembryonic layers sustain the embryo. Human embryonic stem cells, cultured with BMP4 on extracellular matrix micro-discs, reproducibly differentiate into gastruloids, expressing markers of germ layers and extraembryonic cells in radial arrangement. Using single-cell RNA sequencing and cross-species comparisons with mouse, cynomolgus monkey gastrulae, and post-implantation human embryos, we reveal that gastruloids contain cells transcriptionally similar to epiblast, ectoderm, mesoderm, endoderm, primordial germ cells, trophectoderm, and amnion. Upon gastruloid dissociation, single cells reseeded onto micro-discs were motile and aggregated with the same but segregated from distinct cell types. Ectodermal cells segregated from endodermal and extraembryonic but mixed with mesodermal cells. Our work demonstrates that the gastruloid system models primate-specific features of embryogenesis, and that gastruloid cells exhibit evolutionarily conserved sorting behaviors. This work generates a resource for transcriptomes of human extraembryonic and embryonic germ layers differentiated in a stereotyped arrangement
    • …
    corecore