317 research outputs found
Spontaneous CP Violating Phase as The CKM Matrix Phase
We propose that the CP violating phase in the CKM mixing matrix is identical
to the CP phases responsible for the spontaneous CP violation in the Higgs
potential. A specific multi-Higgs model with Peccei-Quinn (PQ) symmetry is
constructed to realize this idea. The CP violating phase does not vanish when
all Higgs masses become large. There are flavor changing neutral current (FCNC)
interactions mediated by neutral Higgs bosons at the tree level. However,
unlike general multi-Higgs models, the FCNC Yukawa couplings are fixed in terms
of the quark masses and CKM mixing angles. Implications for meson-anti-meson
mixing, including recent data on mixing, and neutron electric dipole
moment (EDM) are studied. We find that the neutral Higgs boson masses can be at
the order of one hundred GeV. The neutron EDM can be close to the present
experimental upper bound.Comment: 16 pages, RevTex. Several typos corrected, and one reference adde
Persistent edge currents for paired quantum hall states
We study the behavior of the persistent edge current for paired quantum Hall
states on the cylinder. We show that the currents are periodic with the unit
flux . At low temperatures, they exhibit anomalous oscillations in
their flux dependence.The shape of the functions converges to the sawtooth
function periodic with .Comment: RevTex 8 pages. one figure. to appear in Phys.Rev.
CP Violating Form Factors for Three Gauge Boson Vertex in the Two Higgs Doublet and Left-Right symmetric Models
In this paper we calculate the one loop contributions to the CP violating
three gauge boson couplings in two-Higgs doublet and Left--Right symmetric
models. In the two-Higgs doublet model only a P conserving and CP violating
coupling is generated, and it can be large as . In the Left--Right
symmetric model both P conserving and violating couplings are generated. Due to
constraints on the -- mixing, these couplings are small.Comment: 9 pages, Tex, UM-P-92/75, OZ-92/2
Skyrmion Excitations in Quantum Hall Systems
Using finite size calculations on the surface of a sphere we study the
topological (skyrmion) excitation in quantum Hall system with spin degree of
freedom at filling factors around . In the absence of Zeeman energy, we
find, in systems with one quasi-particle or one quasi-hole, the lowest energy
band consists of states with , where and are the total orbital and
spin angular momentum. These different spin states are almost degenerate in the
thermodynamic limit and their symmetry-breaking ground state is the state with
one skyrmion of infinite size. In the presence of Zeeman energy, the skyrmion
size is determined by the interplay of the Zeeman energy and electron-electron
interaction and the skyrmion shrinks to a spin texture of finite size. We have
calculated the energy gap of the system at infinite wave vector limit as a
function of the Zeeman energy and find there are kinks in the energy gap
associated with the shrinking of the size of the skyrmion. breaking ground
state is the state with one skyrmion of infinite size. In the presence of
Zeeman energy, the skyrmion size is determined by the interplay of the Zeeman
energy and electron-electronComment: 4 pages, 5 postscript figures available upon reques
Anomalous Neutrino Interaction, Muon g-2, and Atomic Parity Nonconservation
We propose a simple unified description of two recent precision measurements
which suggest new physics beyond the Standard Model of particle interactions,
i.e. the deviation of in deep inelastic neutrino-nucleon
scattering and that of the anomalous magnetic moment of the muon. Our proposal
is also consistent with a third precision measurement, i.e. that of parity
nonconservation in atomic Cesium, which agrees with the Standard Model.Comment: 9 pages, including 1 figure, latest muon g-2 information adde
Hadron Collider Signatures for New Interactions of Top and Bottom Quarks
One of the main goals for hadron colliders is the study of the properties of
the third generation quarks. We study the signatures for new TeV resonances
that couple to top or bottom quarks both at the Tevatron Run II and at the LHC.
We find that in the simplest production processes of Drell-Yan type at the
Tevatron, the signals are overwhelmed by QCD backgrounds. We also find that it
is possible to study these resonances when they are produced in association
with a pair of heavy quarks or in association with a single top at the LHC.In
particular, with an integrated luminosity of 300 fb at the LHC, it is
possible to probe resonance masses up to around 2 TeV.Comment: 24 pages, 15 figures, Minor corrections, version to appear in Phys.
Rev.
How Big Can Anomalous W Couplings Be?
Conventional wisdom has it that anomalous gauge-boson self-couplings can be
at most a percent or so in size. We test this wisdom by computing these
couplings at one loop in a generic renormalizable model of new physics. (For
technical reasons we consider the CP-violating couplings here, but our results
apply more generally.) By surveying the parameter space we find that the
largest couplings (several percent) are obtained when the new particles are at
the weak scale. For heavy new physics we compare our findings with expectations
based on an effective-lagrangian analysis. We find general patterns of induced
couplings which robustly reflect the nature of the underlying physics. We build
representative models for which the new physics could be first detected in the
anomalous gauge couplings.Comment: 40 pages, 11 figures, (dvi file and figures combined into a uuencoded
compressed file), (We correct an error in eq. 39 and its associated figure
(9). No changes at all to the text.), McGill-93/40, UQAM-PHE-93/03,
NEIPH-93-00
phase shifts and CP Violation in Decay
In the study of CP violation signals in {\O}\to\pi\Xi nonleptonic decays,
the strong =3/2 and phase shifts for the final-state
interactions are needed. These phases are calculated using an effective
Lagrangian model, including , (1530), and the -term,
in the intermediate states. The -term is calculated in terms of the
scalar form factor of the baryon.Comment: 6 pages, 2 figure
CP Violation in Fermion Pair Decays of Neutral Boson Particles
We study CP violation in fermion pair decays of neutral boson particles with
spin 0 or 1. We study a new asymmetry to measure CP violation in decays and discuss the possibility of measuring it
experimentally. For the spin-1 particles case, we study CP violation in the
decays of to octet baryon pairs. We show that these decays can
be used to put stringent constraints on the electric dipole moments of
, and .Comment: 14p, OZ-93/22, UM-93/89, OITS 51
Final State Rescattering and Color-suppressed \bar B^0-> D^{(*)0} h^0 Decays
The color-suppressed \bar B^0-> D^{(*)0}\pi^0, D^{(*)0}\eta, D^0\omega decay
modes have just been observed for the first time. The rates are all larger than
expected, hinting at the presence of final state interactions. Considering \bar
B^0-> D^{(*)0}\pi^0 mode alone, an elastic D^{(*)}\pi -> D^{(*)}\pi
rescattering phase difference \delta \equiv \delta_{1/2} - \delta_{3/2} \sim
30^\circ would suffice, but the \bar B^0-> D^{(*)0}\eta, D^0\omega modes compel
one to extend the elastic formalism to SU(3) symmetry. We find that a universal
a_2/a_1=0.25 and two strong phase differences 20^\circ \sim \theta < \delta <
\delta^\prime \sim 50^\circ can describe both DP and D^*P modes rather well;
the large phase of order 50^\circ is needed to account for the strength of {\it
both} the D^{(*)0}\pi^0 and D^{(*)0}\eta modes. For DV modes, the nonet
symmetry reduces the number of physical phases to just one, giving better
predictive power. Two solutions are found. We predict the rates of the \bar
B^0-> D^{+}_s K^-, D^{*+}_s K^-, D^0\rho^0, D^+_s K^{*-} and D^0\phi modes, as
well as \bar B^0-> D^{0}\bar K^0, D^{*0}\bar K^0, D^{0}\bar K^{*0} modes. The
formalism may have implications for rates and CP asymmetries of charmless
modes.Comment: REVTeX4, 18 pages, 5 figures, to appear in Phys. Rev.
- …