84 research outputs found

    Angle-resolved broadband ferromagnetic resonance apparatus enabled through a spring-loaded sample mounting manipulator

    Full text link
    Broadband ferromagnetic resonance is a useful technique to determine the magnetic anisotropy and study the magnetization dynamics of magnetic thin films. We report a spring-loaded sample loading manipulator for reliable sample mounting and rotation. The manipulator enables maximum signal, enhances system stability and is particularly useful for fully automated in-plane-field angle-resolved measurements. This angle-resolved broadband ferromagnetic resonance apparatus provides a viable method to study anisotropic damping and weak magnetic anisotropies, both vital for fundamental research and applications.Comment: 11pages,4 figure

    Magnetization dynamics and its scattering mechanism in thin CoFeB films with interfacial anisotropy

    Full text link
    Studies of magnetization dynamics have incessantly facilitated the discovery of fundamentally novel physical phenomena, making steady headway in the development of magnetic and spintronics devices. The dynamics can be induced and detected electrically, offering new functionalities in advanced electronics at the nanoscale. However, its scattering mechanism is still disputed. Understanding the mechanism in thin films is especially important, because most spintronics devices are made from stacks of multilayers with nanometer thickness. The stacks are known to possess interfacial magnetic anisotropy, a central property for applications, whose influence on the dynamics remains unknown. Here, we investigate the impact of interfacial anisotropy by adopting CoFeB/MgO as a model system. Through systematic and complementary measurements of ferromagnetic resonance (FMR), on a series of thin films, we identify narrower FMR linewidths at higher temperatures. We explicitly rule out the temperature dependence of intrinsic damping as a possible cause, and it is also not expected from existing extrinsic scattering mechanisms for ferromagnets. We ascribe this observation to motional narrowing, an old concept so far neglected in the analyses of FMR spectra. The effect is confirmed to originate from interfacial anisotropy, impacting the practical technology of spin-based nanodevices up to room temperature.Comment: 23 pages,3 figure

    Interaction analysis under misspecification of main effects: Some common mistakes and simple solutions

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154951/1/sim8505_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154951/2/sim8505.pd

    MusicAgent: An AI Agent for Music Understanding and Generation with Large Language Models

    Full text link
    AI-empowered music processing is a diverse field that encompasses dozens of tasks, ranging from generation tasks (e.g., timbre synthesis) to comprehension tasks (e.g., music classification). For developers and amateurs, it is very difficult to grasp all of these task to satisfy their requirements in music processing, especially considering the huge differences in the representations of music data and the model applicability across platforms among various tasks. Consequently, it is necessary to build a system to organize and integrate these tasks, and thus help practitioners to automatically analyze their demand and call suitable tools as solutions to fulfill their requirements. Inspired by the recent success of large language models (LLMs) in task automation, we develop a system, named MusicAgent, which integrates numerous music-related tools and an autonomous workflow to address user requirements. More specifically, we build 1) toolset that collects tools from diverse sources, including Hugging Face, GitHub, and Web API, etc. 2) an autonomous workflow empowered by LLMs (e.g., ChatGPT) to organize these tools and automatically decompose user requests into multiple sub-tasks and invoke corresponding music tools. The primary goal of this system is to free users from the intricacies of AI-music tools, enabling them to concentrate on the creative aspect. By granting users the freedom to effortlessly combine tools, the system offers a seamless and enriching music experience

    Neutrophils Compromise Retinal Pigment Epithelial Barrier Integrity

    Get PDF
    We hypothesized that neutrophils and their secreted factors mediate breakdown of the integrity of the outer blood-retina-barrier by degrading the apical tight junctions of the retinal pigment epithelium (RPE). The effect of activated neutrophils or neutrophil cell lysate on apparent permeability of bovine RPE-Choroid explants was evaluated by measuring [3H] mannitol flux in a modified Ussing chamber. The expression of matrix metalloproteinase- (MMP-) 9 in murine peritoneal neutrophils, and the effects of neutrophils on RPE tight-junction protein expression were assessed by confocal microscopy and western blot. Our results revealed that basolateral incubation of explants with neutrophils decreased occludin and ZO-1 expression at 1 and 3 hours and increased the permeability of bovine RPE-Choroid explants by >3-fold (P < .05). Similarly, basolateral incubation of explants with neutrophil lysate decreased ZO-1 expression at 1 and 3 hours (P < .05) and increased permeability of explants by 75%. Further, we found that neutrophils prominently express MMP-9 and that incubation of explants with neutrophils in the presence of anti-MMP-9 antibody inhibited the increase in permeability. These data suggest that neutrophil-derived MMP-9 may play an important role in disrupting the integrity of the outer blood-retina barrier

    Microwave resonances of magnetic skyrmions in thin film multilayers

    Get PDF
    Non-collinear magnets exhibit a rich array of dynamic properties at microwave frequencies. They can host nanometre-scale topological textures known as skyrmions, whose spin resonances are expected to be highly sensitive to their local magnetic environment. Here, we report a magnetic resonance study of an [Ir/Fe/Co/Pt] multilayer hosting Néel skyrmions at room temperature. Experiments reveal two distinct resonances of the skyrmion phase during in-plane ac excitation, with frequencies between 6–12 GHz. Complementary micromagnetic simulations indicate that the net magnetic dipole moment rotates counterclockwise (CCW) during both resonances. The magnon probability distribution for the lower-frequency resonance is localised within isolated skyrmions, unlike the higher-frequency mode which principally originates from areas between skyrmions. However, the properties of both modes depend sensitively on the out-of-plane dipolar coupling, which is controlled via the ferromagnetic layer spacing in our heterostructures. The gyrations of stable isolated skyrmions reported in this room temperature study encourage the development of new material platforms and applications based on skyrmion resonances. Moreover, our material architecture enables the resonance spectra to be tuned, thus extending the functionality of such applications over a broadband frequency range
    corecore