58 research outputs found

    Microarray-based gene expression profiles of silkworm brains

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Molecular genetic studies of <it>Bombyx mori </it>have led to profound advances in our understanding of the regulation of development. <it>Bombyx mori </it>brain, as a main endocrine organ, plays important regulatory roles in various biological processes. Microarray technology will allow the genome-wide analysis of gene expression patterns in silkworm brains.</p> <p>Results</p> <p>We reported microarray-based gene expression profiles in silkworm brains at four stages including V7, P1, P3 and P5. A total of 4,550 genes were transcribed in at least one selected stage. Of these, clustering algorithms separated the expressed genes into stably expressed genes and variably expressed genes. The results of the gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analysis of stably expressed genes showed that the ribosomal and oxidative phosphorylation pathways were principal pathways. Secondly, four clusters of genes with significantly different expression patterns were observed in the 1,175 variably expressed genes. Thirdly, thirty-two neuropeptide genes, six neuropeptide-like precursor genes, and 117 cuticular protein genes were expressed in selected developmental stages.</p> <p>Conclusion</p> <p>Major characteristics of the transcriptional profiles in the brains of <it>Bombyx mori </it>at specific development stages were present in this study. Our data provided useful information for future research.</p

    A syntenic coding region for vitelline membrane proteins in four lepidopteran insects

    Get PDF
    The vitelline membrane is the inner layer of the eggshell, but the genomic information available for vitelline membrane proteins (VMPs) in Lepidoptera is limited. In the present study, we identified a syntenic coding region for VMPs in four lepidopteran genomes (Bombyx mori, Manduca sexta, Danaus plexippus and Heliconius melpomene) and four putative VMP coding genes located within it. RT-PCR results showed Bombyx VMP coding genes expressed prior to the early choriogenesis stage in follicles. Alignment analyses revealed that the vitelline membrane domain was shared between Lepidoptera and Diptera. However, the third cysteine residue conserved in dipteran VMPs was absent in those of Lepidoptera. In addition, another conserved region was identified in lepidopteran VMPs

    Expression profile of cuticular genes of silkworm, Bombyx mori

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insect cuticle plays essential roles in many physiological functions. During molting and metamorphosis tremendous changes occur in silkworm cuticle where multiple proteins exist and genes encoding them constitute about 1.5% of all <it>Bombyx mori </it>genes.</p> <p>Results</p> <p>In an effort to determine their expression profiles, a microarray-based investigation was carried out using mRNA collected from larvae to pupae. The results showed that a total of 6676 genes involved in various functions and physiological pathways were activated. The vast majority (93%) of cuticular protein genes were expressed in selected stages with varying expression patterns. There was no correlation between expression patterns and the presence of conserved motifs. Twenty-six RR genes distributed in chromosome 22 were co-expressed at the larval and wandering stages. The 2 kb upstream regions of these genes were further analyzed and three putative elements were identified.</p> <p>Conclusions</p> <p>Data from the present study provide, for the first time, a comprehensive expression profile of genes in silkworm epidermal tissues and evidence that putative elements exist to allow massive production of mRNAs from specific cuticular protein genes.</p

    Proteomic Analysis of Larval Midgut from the Silkworm (Bombyx mori)

    Get PDF
    The midgut is the major organ for food digestion, nutrient absorption and also a barrier for foreign substance. The 5th-instar larval stage of silkworm is very important for larval growth, development, and silk production. In the present study, we used 2-DE and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) to analyze the midgut proteins from the 5th-instar larvae as well as the midgut proteins under starvation condition. A total of 96 proteins were identified in this study; and among them, 69 proteins were observed in midgut for the first time. We also found that the silkworm larval midgut responded to starvation by producing a 10 kDa heat shock protein and a diapause hormone precursor

    Annotation and analysis of a large cuticular protein family with the R&R Consensus in Anopheles gambiae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The most abundant family of insect cuticular proteins, the CPR family, is recognized by the R&R Consensus, a domain of about 64 amino acids that binds to chitin and is present throughout arthropods. Several species have now been shown to have more than 100 CPR genes, inviting speculation as to the functional importance of this large number and diversity.</p> <p>Results</p> <p>We have identified 156 genes in <it>Anopheles gambiae </it>that code for putative cuticular proteins in this CPR family, over 1% of the total number of predicted genes in this species. Annotation was verified using several criteria including identification of TATA boxes, INRs, and DPEs plus support from proteomic and gene expression analyses. Two previously recognized CPR classes, RR-1 and RR-2, form separate, well-supported clades with the exception of a small set of genes with long branches whose relationships are poorly resolved. Several of these outliers have clear orthologs in other species. Although both clades are under purifying selection, the RR-1 variant of the R&R Consensus is evolving at twice the rate of the RR-2 variant and is structurally more labile. In contrast, the regions flanking the R&R Consensus have diversified in amino-acid composition to a much greater extent in RR-2 genes compared with RR-1 genes. Many genes are found in compact tandem arrays that may include similar or dissimilar genes but always include just one of the two classes. Tandem arrays of RR-2 genes frequently contain subsets of genes coding for highly similar proteins (sequence clusters). Properties of the proteins indicated that each cluster may serve a distinct function in the cuticle.</p> <p>Conclusion</p> <p>The complete annotation of this large gene family provides insight on the mechanisms of gene family evolution and clues about the need for so many CPR genes. These data also should assist annotation of other <it>Anopheles </it>genes.</p

    Microarray-based gene expression profiles in multiple tissues of the domesticated silkworm, Bombyx mori

    Get PDF
    Using a genome-wide oligonucleotide microarray, gene expression was surveyed in multiple silkworm tissues on day 3 of the fifth instar, providing a new resource for annotating the silkworm genome

    Lepidopteran wing scales contain abundant cross-linked film-forming histidine-rich cuticular proteins

    Get PDF
    Scales are symbolic characteristic of Lepidoptera; however, nothing is known about the contribution of cuticular proteins (CPs) to the complex patterning of lepidopteran scales. This is because scales are resistant to solubilization, thus hindering molecular studies. Here we succeeded in dissolving developing wing scales from Bombyx mori, allowing analysis of their protein composition. We identified a distinctive class of histidine rich (His-rich) CPs (6%–45%) from developing lepidopteran scales by LC-MS/MS. Functional studies using RNAi revealed CPs with different histidine content play distinct and critical roles in constructing the microstructure of the scale surface. Moreover, we successfully synthesized films in vitro by crosslinking a 45% His-rich CP (BmorCPR152) with laccase2 using N-acetyl- dopamine or N-β-alanyl-dopamine as the substrate. This molecular study of scales provides fundamental information about how such a fine microstructure is constructed and insights into the potential application of CPs as new biomaterials

    Draft genome sequence of the mulberry tree Morus notabilis

    Get PDF
    Human utilization of the mulberry–silkworm interaction started at least 5,000 years ago and greatly influenced world history through the Silk Road. Complementing the silkworm genome sequence, here we describe the genome of a mulberry species Morus notabilis. In the 330-Mb genome assembly, we identify 128 Mb of repetitive sequences and 29,338 genes, 60.8% of which are supported by transcriptome sequencing. Mulberry gene sequences appear to evolve ~3 times faster than other Rosales, perhaps facilitating the species’ spread worldwide. The mulberry tree is among a few eudicots but several Rosales that have not preserved genome duplications in more than 100 million years; however, a neopolyploid series found in the mulberry tree and several others suggest that new duplications may confer benefits. Five predicted mulberry miRNAs are found in the haemolymph and silk glands of the silkworm, suggesting interactions at molecular levels in the plant–herbivore relationship. The identification and analyses of mulberry genes involved in diversifying selection, resistance and protease inhibitor expressed in the laticifers will accelerate the improvement of mulberry plants

    Preparation of Polysaccharides from <i>Ramulus mori</i>, and Their Antioxidant, Anti-Inflammatory and Antibacterial Activities

    No full text
    The extraction of Ramulus mori polysaccharides (RMPs) was optimized using response surface methodology (RSM). The optimal process conditions, which gave the highest yield of RMPs (6.25%) were 80 &#176;C, 50 min, and a solid&#8315;liquid ratio of 1:40 (g/mL), with the extraction performed twice. The RMPs contained seven monosaccharides, namely, mannose, rhamnose; glucuronic acid, glucose, xylose, galactose, and arabinose, in a 1.36:2.68:0.46:328.17:1.53:21.80:6.16 molar ratio. The glass transition and melting temperatures of RMPs were 83 and 473 &#176;C, respectively. RMPs were &#945;-polysaccharides and had surfaces that resembled a porous sponge, as observed by scanning electron microscopy. RMPs inhibited the proliferation of Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa and showed antioxidant activity (assessed by three different methods), although it was generally weaker than that of vitamin C. RMPs showed anti-inflammatory activity in a concentration-dependent manner. This study provides a basis for exploring the potential uses of RMPs
    corecore