12 research outputs found

    Predicting aircraft trajectory uncertainties for terminal airspace design evaluation

    No full text
    The terminal airspace that surrounds an airport is the area with high flight density and complex structure. Aircraft are asked to follow the standard arrival and departure routes in terminal airspace, yet the actual trajectories may deviate due to air traffic control (ATC) instructions, pilots' decisions, surveillance and flying performance variations, etc. Predicting aircraft trajectories considering such uncertainties plays a crucial role in evaluating a redesign of the standard routes. Traditional simulation approaches for generating aircraft trajectories in a terminal airspace are cumbersome to use as it requires a detailed setup for each new scenario, while most existing data-driven methods can only be used in an airspace with historical trajectories, not applicable to new structure designs or other terminal areas. To fill in gap, in this paper, we develop a new model based on Multilayer Perceptron Neural Network (MLPNN) to predict aircraft trajectories with uncertainties for terminal airspace design evaluations. A key feature of the proposed model is that it is trained on existing standard routes yet it can be applied to new standard routes to generate trajectories. The enabler of the model's transferability is a novel input-and-output construction method for feature representations of raw trajectory data based on domain knowledge, including trajectory reconstruction, feature engineering, and output designing. After the input-and-output construction, a supervised learning model based on MLPNN is built to predict the standard deviations from the extracted features using historical trajectory data of existing standard routes. Once the model is built, trajectories with uncertainty can be simulated, through applying Gaussian distribution and exponential moving average algorithms, even on newly designed standard routes, where no aircraft have flown yet. Subsequently, new terminal airspace designs could be evaluated for their safety, efficiency, and environmental implications based on the simulated trajectories. The proposed model was tested on real-world operational data. Results showed that the model can quantify the characteristics of aircraft trajectories that are transferable across standard routes, and generate trajectories for new standard routes. We also demonstrated the proposed model on evaluating deficiencies on fuel consumption of actual arrival trajectories compared with the designed arrival routes. The generated trajectories showed 23%–37% more fuel consumption on average than the standard arrival routes in the terminal airspace of Hong Kong International Airport, which was validated with actual flight data.Air Transport & Operation

    Mechanical instability of monocrystalline and polycrystalline methane hydrates

    No full text
    Despite observations of massive methane release and geohazards associated with gas hydrate instability in nature, as well as ductile flow accompanying hydrate dissociation in artificial polycrystalline methane hydrates in the laboratory, the destabilising mechanisms of gas hydrates under deformation and their grain-boundary structures have not yet been elucidated at the molecular level. Here we report direct molecular dynamics simulations of the material instability of monocrystalline and polycrystalline methane hydrates under mechanical loading. The results show dislocation-free brittle failure in monocrystalline hydrates and an unexpected crossover from strengthening to weakening in polycrystals. Upon uniaxial depressurisation, strain-induced hydrate dissociation accompanied by grain-boundary decohesion and sliding destabilises the polycrystals. In contrast, upon compression, appreciable solid-state structural transformation dominates the response. These findings provide molecular insight not only into the metastable structures of grain boundaries, but also into unusual ductile flow with hydrate dissociation as observed during macroscopic compression experiments.Process and EnergyMechanical, Maritime and Materials Engineerin

    Hybrid Plasmonics Slot THz Waveguide for Subwavelength Field Confinement and Crosstalk between Two Waveguides

    No full text
    The slot waveguide has attracted considerable attention because of its ability to confine and guide electromagnetic energy at the subwavelength scale beyond the diffraction limit. We propose a novel terahertz slot waveguide structure to achieve a better tradeoff between propagation length and field confinement capacity, the novel waveguide consisting of a two slot structure. The performances of terahertz waveguides were investigated using the finite-element method. The results demonstrated that the hybrid slot waveguide (HSW) provides significantly enhanced field confinement in low index slot regions: more than five times that of traditional low index slot waveguides (LISWs). An optimized HSW structure was achieved by tuning the tradeoff between mode confinement and propagation length. We also showed that its integration in conventional planar waveguide circuits was greatly improved compared with the LISWs, by comparing their crosstalk. The proposed new HSW structure has great potential to enable THz production of compact integration and could lead to true semiconductor-basedTHz applications with high performance.Electronic Components, Technology and Material

    A CMOS-Compatible Hybrid Plasmonic Slot Waveguide With Enhanced Field Confinement

    No full text
    The emerging field of nanophotonics requires plasmonic devices to be fully compatible with semiconductor fabrication techniques. However, very few feasible practical structures exist at present. Here, we propose a CMOS-compatible hybrid plasmonic slot waveguide (HPSW) with enhanced field confinement. Our simulation results show that the HPSW exhibits significantly enhanced field confinement as compared with the traditional low-index slot waveguides and the hybrid metal dielectric slot waveguides. By controlling the thicknesses of different layers, an optimized HPSW structure with a better tradeoff between field confinement and propagation length has been simultaneously achieved.Electronic Components, Technology and Material

    Paper-based microfluidic sampling and separation of analytes for potentiometric ion sensing

    No full text
    This work demonstrates a paper-based microfluidic sampling and separation platform that allows potentiometric sensing of chloride ions in presence of strongly interfering salicylate ions using a solid-contact ion-selective electrode as a detector. The device was composed of two pieces of paper with different shapes and pore sizes. A "T" shaped filter paper with a pore size of 12-25 was used as the detection zone. A filter paper with a pore size of 2.0 mu m was modified with a complexing agent (Fe3+ and served as the separation zone. The two pieces of the paper were joined together just like a jigsaw. A solid-contact Cl--selective electrode and a reference electrode were gently pressed onto the detection zone to create a direct contact between the electrodes and the solution absorbed in the paper. Utilizing the possibility to form stable complexes between Fe3+ and salicylate, the proposed platform enables the separation of salicylate and detection of chloride. This system offers a convenient platform for both sampling and separation of ions, in which sample pretreatment procedures can be simplified or avoided.&nbsp

    Effects of water stress on water use efficiency of irrigated and rainfed wheat in the Loess Plateau, China

    No full text
    The Loess Plateau, the largest arid and semi-arid zone in China, has been confronted with more severe water resource pressure and a growing demand for food production under global changes. For developing sustainable agriculture in this region, it is critical to learn spatiotemporal variations in water use efficiency (WUE) of main crops (e.g. winter wheat in this region) under various water management practices. In this study, we classified irrigated and rainfed wheat areas based on MODIS data, and calculated the winter wheat yield by using an improved light use efficiency model. The actual evapotranspiration (ETa) of winter wheat and the evapotranspiration drought index (EDI) were also investigated. Then we mainly examined the synergistic relationship between crop yield, ETa, and WUE, and analyzed the variations in WUE of irrigated and rainfed wheat under water stress during the 2010-2011 growing season. The results suggested that winter wheat in the Loess Plateau was primarily dominated by fainted wheat. The average yield of irrigated wheat was 3928.4 kg/ha, 22.2% more than that of rainfed wheat. High spatial heterogeneities of harvest index (HI) and maximum light use efficiency (epsilon(max )) were found in the Loess Plateau. The ETa of irrigated wheat was 102% more than that of rainfed wheat. The ratio of irrigated and rainfed wheat under no water stress was 31.55% and 17.16%, respectively. With increasing water stress, the WUE of rainfed wheat decreased more quickly than that of irrigated wheat. The WUE variations in winter wheat under water stress depended strongly on the synergistic effects of two WUE components (crop yield and ETa) and their response to environmental conditions as well as water management practices (irrigated or rainfed). Our findings enhance our current understanding of the variations in WUE as affected by water stress under various water use conditions in arid and semi-arid areas. (C) 2018 Elsevier B.V. All rights reserved

    Transgenic expression of delta-6 and delta-15 fatty acid desaturases enhances omega-3 polyunsaturated fatty acid accumulation in Synechocystis sp PCC6803

    No full text
    Background: Polyunsaturated fatty acids (PUFAs), which contain two or more double bonds in their backbone, are the focus of intensive global research, because of their nutritional value, medicinal applications, and potential use as biofuel. However, the ability to produce these economically important compounds is limited, because it is both expensive and technically challenging to separate omega-3 polyunsaturated fatty acids (omega-3 PUFAs) from natural oils. Although the biosynthetic pathways of some plant and microalgal omega-3 PUFAs have been deciphered, current understanding of the correlation between fatty acid desaturase content and fatty acid synthesis in Synechocystis sp. PCC6803 is incomplete. Results: We constructed a series of homologous vectors for the endogenous and exogenous expression of Delta 6 and Delta 15 fatty acid desaturases under the control of the photosynthesis psbA2 promoter in transgenic Synechocystis sp. PCC6803. We generated six homologous recombinants, harboring various fatty acid desaturase genes from Synechocystis sp. PCC6803, Gibberella fujikuroi and Mortierella alpina. These lines produced up to 8.9 mg/l of alpha-linolenic acid (ALA) and 4.1 mg/l of stearidonic acid (SDA), which are more than six times the corresponding wild-type levels, at 20 degrees C and 30 degrees C. Thus, transgenic expression of Delta 6 and Delta 15 fatty acid desaturases enhances the accumulation of specific omega-3 PUFAs in Synechocystis sp. PCC6803. Conclusions: In the blue-green alga Synechocystis sp. PCC6803, overexpression of endogenous and exogenous genes encoding PUFA desaturases markedly increased accumulation of ALA and SDA and decreased accumulation of linoleic acid and gamma-linolenic acid. This study lays the foundation for increasing the fatty acid content of cyanobacteria and, ultimately, for producing nutritional and medicinal products with high levels of essential omega-3 PUFAs.Background: Polyunsaturated fatty acids (PUFAs), which contain two or more double bonds in their backbone, are the focus of intensive global research, because of their nutritional value, medicinal applications, and potential use as biofuel. However, the ability to produce these economically important compounds is limited, because it is both expensive and technically challenging to separate omega-3 polyunsaturated fatty acids (omega-3 PUFAs) from natural oils. Although the biosynthetic pathways of some plant and microalgal omega-3 PUFAs have been deciphered, current understanding of the correlation between fatty acid desaturase content and fatty acid synthesis in Synechocystis sp. PCC6803 is incomplete

    Numerical simulation and experimental investigation of laser overlap welding of Ti6Al4V and 42CrMo

    No full text
    Finite element method (FEM) and processing experiments were utilized to investigate the thermal phenomena and microstructure of laser overlap welding of Ti6Al4V and 42CrMo. A FEM model of temperature field was established, under considerations of thermal contact resistance and forced convection effect of shielding gas flow. Based on the model, temperature field with various laser power values and scanning velocities was calculated to explore the relationship between the process parameters and the interface temperature. Experiments were conducted on a 1 kW Nd:YAG laser materials processing system with five-axis CNC working station. Microstructure, chemical composition and microhardness of the joint were evaluated. From the numerical simulation and experimental investigation, the calculated temperature history at measuring points had the similar tendency to the experimental results. The interface temperature could just reach or be a little higher than the melting point of the lower sheet material 42CrMo by adjusting the process parameters according to the numerical calculation. At the interface, intermetallic compounds TiFe and TiFe(2) were detected. The thickness of intermetallic reaction layer containing intermetallic compounds was found to depend on the heat input. (C) 2010 Elsevier B.V. All rights reserved

    Genome-wide characterization of the ankyrin repeats gene family under salt stress in soybean

    No full text
    Ankyrin repeats (ANK) gene family are common in diverse organisms and play important roles in cell growth, development and response to environmental stresses. Recently, genome-wide identification and evolutionary analyses of the ANK gene family have been carried out in Arabidopsis, rice and maize. However, little is known about the ANK genes in the whole soybean genome. In this study, we described the identification and structural characterization of 162ANK genes in soybean (GmANK). Then, comprehensive bioinformatics analyses of GmANK genes family were performed including gene locus, phylogenetic, domain composition analysis, chromosomal localization and expression profiling. Domain composition analyses showed that GmANK proteins formed eleven subfamilies in soybean. In sicilo expression analysis of these GmANK genes demonstrated that GmANK genes showa diverse/various expression pattern, suggesting that functional diversification of GmANK genes family. Based on digital gene expression profile (DGEP) data between cultivated soybean and wild type under salt treatment, some GmANKs related to salt/drought response were investigated. Moreover, the expression pattern and subcellular localization of GmANK6 were performed. The results will provide important clues to explore ANK genes expression and function in future studies in soybean. (C) 2016 Elsevier B.V. All rights reserved

    Laser surface hardening of 42CrMo cast steel for obtaining a wide and uniform hardened layer by shaped beams

    No full text
    For laser surface hardening (LSH) of large-sized workpieces, a wide and uniform hardened layer of a single track is pursued. In this study, two kinds of shaped laser beams were used in LSH of 42CrMo cast steel to obtain the required hardened layer. One is a stripy spot with uniform-intensity array spots and the other a stripy spot with intensity blowup in the edge of the whole array spots. As a comparison, a Gaussian laser beam was also adopted. A three-dimensional finite element model was used to simulate the thermal history of specific points by the latter shaped beam and the Gaussian laser beam. The surface morphology, microstructure, microhardness, and uniformity of hardened layers were studied. The results showed that a wider and more uniform hardened layer could be obtained using the latter shaped beam at relative higher scanning velocities and laser power. The thermal history of a material has an important effect on the microstructure and microhardness finally formed. Due to the high peak temperature and heating rate caused by the latter shaped beam, a higher value of microhardness in the transformation hardened zone was found
    corecore