59 research outputs found

    PKA phosphorylation activates the calcium release channel (ryanodine receptor) in skeletal muscle: defective regulation in heart failure

    Get PDF
    The type 1 ryanodine receptor (RyR1) on the sarcoplasmic reticulum (SR) is the major calcium (Ca2+) release channel required for skeletal muscle excitation–contraction (EC) coupling. RyR1 function is modulated by proteins that bind to its large cytoplasmic scaffold domain, including the FK506 binding protein (FKBP12) and PKA. PKA is activated during sympathetic nervous system (SNS) stimulation. We show that PKA phosphorylation of RyR1 at Ser2843 activates the channel by releasing FKBP12. When FKB12 is bound to RyR1, it inhibits the channel by stabilizing its closed state. RyR1 in skeletal muscle from animals with heart failure (HF), a chronic hyperadrenergic state, were PKA hyperphosphorylated, depleted of FKBP12, and exhibited increased activity, suggesting that the channels are “leaky.” RyR1 PKA hyperphosphorylation correlated with impaired SR Ca2+ release and early fatigue in HF skeletal muscle. These findings identify a novel mechanism that regulates RyR1 function via PKA phosphorylation in response to SNS stimulation. PKA hyperphosphorylation of RyR1 may contribute to impaired skeletal muscle function in HF, suggesting that a generalized EC coupling myopathy may play a role in HF

    Network of Interactions Between Gut Microbiome, Host Biomarkers, and Urine Metabolome in Carotid Atherosclerosis

    Get PDF
    Comprehensive analyses of multi-omics data may provide insights into interactions between different biological layers concerning distinct clinical features. We integrated data on the gut microbiota, blood parameters and urine metabolites of treatment-naive individuals presenting a wide range of metabolic disease phenotypes to delineate clinically meaningful associations. Trans-omics correlation networks revealed that candidate gut microbial biomarkers and urine metabolite feature were covaried with distinct clinical phenotypes. Integration of the gut microbiome, the urine metabolome and the phenome revealed that variations in one of these three systems correlated with changes in the other two. In a specific note about clinical parameters of liver function, we identified Eubacteriumeligens, Faecalibacteriumprausnitzii and Ruminococcuslactaris to be associated with a healthy liver function, whereas Clostridium bolteae, Tyzzerellanexills, Ruminococcusgnavus, Blautiahansenii, and Atopobiumparvulum were associated with blood biomarkers for liver diseases. Variations in these microbiota features paralleled changes in specific urine metabolites. Network modeling yielded two core clusters including one large gut microbe-urine metabolite close-knit cluster and one triangular cluster composed of a gut microbe-blood-urine network, demonstrating close inter-system crosstalk especially between the gut microbiome and the urine metabolome. Distinct clinical phenotypes are manifested in both the gut microbiome and the urine metabolome, and inter-domain connectivity takes the form of high-dimensional networks. Such networks may further our understanding of complex biological systems, and may provide a basis for identifying biomarkers for diseases. Deciphering the complexity of human physiology and disease requires a holistic and trans-omics approach integrating multi-layer data sets, including the gut microbiome and profiles of biological fluids. By studying the gut microbiome on carotid atherosclerosis, we identified microbial features associated with clinical parameters, and we observed that groups of urine metabolites correlated with groups of clinical parameters. Combining the three data sets, we revealed correlations of entities across the three systems, suggesting that physiological changes are reflected in each of the omics. Our findings provided insights into the interactive network between the gut microbiome, blood clinical parameters and the urine metabolome concerning physiological variations, and showed the promise of trans-omics study for biomarker discovery.publishedVersio

    The combination of hand grip strength and modified Glasgow prognostic score predicts clinical outcomes in patients with liver cancer

    Get PDF
    PurposePrevious studies have shown that both hand grip strength (HGS) and the modified Glasgow Prognostic Score (mGPS) are associated with poor clinical outcomes in patients with liver cancer. In spite of this, no relevant studies have been conducted to determine whether the combination of HGS and mGPS can predict the prognosis of patients with liver cancer. Accordingly, this study sought to explore this possibility.MethodsThis was a multicenter study of patients with liver cancer. Based on the optimal HGS cutoff value for each sex, we determined the HGS cutoff values. The patients were divided into high and low HGS groups based on their HGS scores. An mGPS of 0 was defined as low mGPS, whereas scores higher than 0 were defined as high mGPS. The patients were combined into HGS-mGPS groups for the prediction of survival. Survival analysis was performed using Kaplan–Meier curves. A Cox regression model was designed and adjusted for confounders. To evaluate the nomogram model, receiver operating characteristic curves and calibration curves were used.ResultsA total of 504 patients were enrolled in this study. Of these, 386 (76.6%) were men (mean [SD] age, 56.63 [12.06] years). Multivariate analysis revealed that patients with low HGS and high mGPS had a higher risk of death than those with neither low HGS nor high mGPS (hazard ratio [HR],1.50; 95% confidence interval [CI],1.14–1.98; p = 0.001 and HR, 1.55; 95% CI, 1.14–2.12, p = 0.001 respectively). Patients with both low HGS and high mGPS had 2.35-fold increased risk of death (HR, 2.35; 95% CI, 1.52–3.63; p < 0.001). The area under the curve of HGS-mGPS was 0.623. The calibration curve demonstrated the validity of the HGS-mGPS nomogram model for predicting the survival of patients with liver cancer.ConclusionA combination of low HGS and high mGPS is associated with poor prognosis in patients with liver cancer. The combination of HGS and mGPS can predict the prognosis of liver cancer more accurately than HGS or mGPS alone. The nomogram model developed in this study can effectively predict the survival outcomes of liver cancer

    Multiancestry analysis of the HLA locus in Alzheimer’s and Parkinson’s diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes

    Get PDF
    Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson’s disease (PD) and Alzheimer’s disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased AÎČ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues

    Serum uric acid and outcome in hospitalized elderly patients with chronic heart failure through the whole spectrum of ejection fraction phenotypes

    No full text
    Abstract Introduction Elevated serum uric acid (SUA) levels have been associated with poor outcome in patients with heart failure (HF). Uric acid is associated with inflammation and microvascular dysfunction, which may differentially affect left ventricular ejection fraction (EF) phenotypes. We aimed to identify the role of SUA across EF phenotypes in hospitalized elderly patients with chronic HF. Methods We analyzed 1355 elderly patients who were diagnosed with chronic HF. All patients had SUA levels measured within the first 24 h following admission. Patients with left ventricle EF were categorized as having HF with reduced EF (HFrEF, EF < 40%), HF with mid-range EF (HFmrEF, 40%≩LVEF ≩ 49%) or HF with preserved EF (HFpEF, LVEF ≄ 50%). Endpoints were cardiovascular death, HF rehospitalization, and their composite. The median follow-up period was 18 months. Results Compared with the lowest SUA quartile, the highest SUA quartile was significantly associated with the endpoints (adjusted HR: 2.404, 95% CI: 1.178–4.906, P = 0.016; HR: 1.418, 95% CI: 1.021–1.971, P = 0.037; HR: 1.439, 95% CI: 1.049–1.972, P = 0.024, respectively). After model adjustment, a significant association of SUA with cardiovascular death and the composite endpoint persisted among HFrEF and HFmrEF patients in the highest SUA quartile (P < 0.05 for all). Conclusions In hospitalized elderly patients with chronic HF, SUA is an independent predictor of adverse outcomes, which can be seen in HFrEF and HFmrEF patients
    • 

    corecore