138 research outputs found

    Crystal structure of human nuclear pore complex component NUP43

    Get PDF
    AbstractNuclear pore complexes (NPC) form nuclear pores that cross the nuclear envelope and allow molecules to transport between the nucleus and the cytoplasm. We solved the crystal structure of human Nup43 (hNUP43), an important component in the Nup107 subcomplex of NPC. hNup43 adopts a seven-bladed β-propeller fold. We confirmed by ITC that neither human Nup37 (hNup37) nor human Nup133 (hNup133) interacts with hNup43. We demonstrated by analytical gel filtration that the human Nup85-Seh1L binary complex recruits hNup43 to form a ternary complex. Based on amino acid sequence analysis, we predicted the hNup85-hSeh1L binding surface of hNup43

    A novel compound heterozygous variant of ECEL1 induced joint dysfunction and cartilage degradation: a case report and literature review

    Get PDF
    BackgroundDistal arthrogryposis type 5D (DA5D) represents a subtype of distal arthrogryposis (DA) characterized by congenital joint contractures in the distal extremities. DA5D is inherited in a rare autosomal recessive manner and is associated with the ECEL1 gene. In this report, we describe a case of an infant with bilateral knee contractures and ptosis, caused by a novel compound heterozygous mutation of ECEL1.Case presentationWe conducted DNA extraction, whole-exome sequencing analysis, and mutation analysis of ECEL1 to obtain genetic data on the patient. We subsequently analyzed the patient’s clinical and genetic data. The proband was a 6 months-old male infant who presented with significant bilateral knee contracture disorders and bilateral ptosis. MRI demonstrated cartilage degradation in knee joint. Whole-exome sequencing of the patient’s DNA revealed a compound heterozygous mutation of c.2152-15C>A and c.110_155del in ECEL1. Analysis with the MutationTaster application indicated that c.110_155del was pathogenic (probability = 1), causing frameshift mutations affecting 151 amino acids (p.F37Cfs*151). The truncated protein lost the substructure of a transmembranous site based on the predicted protein crystal structure AF-O95672-F1. The variant of c.2152-15C>A of ECEL1 was also predicted to be disease-causing (probability = 0.98) as it impaired the methylation of ECEL1 serving as an H3K27me3 modification site, which led to the dysfunction of the second topological domain. Therefore, we concluded that the compound heterozygous mutation caused the pathogenic phenotype of this proband.ConclusionThe present case highlights the usefulness of molecular genetic screening in diagnosing unexpected joint disorder. Identification of novel mutations in the ECEL1 gene broadens the mutation spectrum of this gene and adds to the genotype-phenotype map of DA5D. Furthermore, rapid whole-exome sequencing analysis enabled timely diagnosis of this rare disease, facilitating appropriate treatment and scheduled follow-up to improve clinical outcomes

    Circadian clock disruption in autoimmune thyroiditis

    Get PDF
    Objective: A vicious cycle between circadian disruption and escalating immune responses has been described in diverse inflammatory disease. The current study aimed to explore the role of circadian clock disruption in autoimmune thyroiditi s (AIT). Methods: Thirty AIT patients and 30 controls were enrolled and biopsied for thyroid tissues. Alterations of core clock genes expression in AIT thyr oid tissues, and its association with serum and tissue inflammatory biomarkers were a ssessed. For animal studies, C57BL/6J mice administered with porcine thyroglobulin or PBS (as control) combined with adjuvants were sacrificed at four time points to i nvestigate the circadian characteristic of experimental autoimmune thyroiditis (EAT). Light shift (LS) conditions were used to explore the influence of external circadian disturb ance on EAT. Results: The expression of clock genes BMAL1 and PER2 was significantly reduced in thyroid tissues from AIT patients and was negatively correlated to levels of thyroid peroxidase antibodies. In mouse models, diurnal fluctuations of proinflammatory cytokines were demonstrated, and further exposing mice to LS le d to overproduction of TNF-α, IFN-γ, and anti-thyroglobulin antibodies. Circadian analysis revealed significant oscillations of Bmal1, Clock, Per2, Cry1, Ror, and Rev-erb, which was broadly disturbed in EAT, LS, and EAT + LS groups. Conclusions: This study demonstrates that expression pattern of clock genes was disrupted in AIT thyroid, and chronic circadian disruption may aggravate the inflammatory responses in AIT. Whether maintaining a regular cir cadian rhythm can alleviate autoimmune thyroid diseases warrants further research

    miR-205-5p Mediated Downregulation of PTEN Contributes to Cisplatin Resistance in C13K Human Ovarian Cancer Cells

    Get PDF
    Cisplatin resistance is a major cause of treatment failure in advanced ovarian cancer. The limited evidence shows the paradoxical regulation of miR-205 on chemotherapy resistance in cancer. Herein, we found that miR-205-5p was enormously increased in cisplatin-resistant C13K ovarian cancer cells compared with its cisplatin-sensitive OV2008 parental cells using miRNA microarrays, which was further verified by quantitative PCR. Furthermore, we confirmed that inhibition of miR-205-5p upregulated PTEN and subsequently attenuated its downstream target p-AKT, which inversed C13K cells from cisplatin resistance to sensitivity. Our data suggest that miR-205-5p contributes to cisplatin resistance in C13K ovarian cancer cells may via targeting PTEN/AKT pathway

    Clinical features and “early” corticosteroid treatment outcome of pediatric mycoplasma pneumoniae pneumonia

    Get PDF
    BackgroundMany children with mycoplasma pneumoniae (MP) pneumonia (MPP) developed sequelae such as bronchiolitis/bronchitis obliterans (BO). Early corticosteroid therapy might prevent disease progression. This study aimed to use “early” corticosteroid and observe the treatment outcome in patients with MPP.MethodsPatients who had pulmonary infiltrations on chest imaging within 5 days of the disease course and were suspected of having MP infection on admission were enrolled. Among them, patients whose disease course was within 10 days on admission were ultimately enrolled. We analyzed their data including the clinical features, the starting time and dose of corticosteroid therapy, and the treatment outcome. According to chest imaging, we divided patients into two groups (Group A: bronchiolitis-associated lesions or ground-glass opacities; Group B: pulmonary segmental/lobar consolidation).ResultsA total of 210 patients with confirmed MPP were ultimately enrolled. There were 59 patients in Group A and 151 patients in Group B. Patients in Group A were more prone to have allergy histories, hypoxemia, wheezing sound, and wet rales on auscultation than those in Group B. Corticosteroid treatment was initiated between 5 and 10 days of disease onset in all patients and 6–7 days in most patients. Methylprednisolone was prescribed in all patients within 10 days of disease onset, and the highest prescribed dose was at least 2 mg/kg/day. In Group A, methylprednisolone >2 mg/kg/day was prescribed in 22 patients, and among them, 8 patients with diffuse bronchiolitis-associated lesions received high-dose methylprednisolone therapy. After 3 months, lung CT revealed slightly segmental ground-glass opacity in three patients. In Group B, methylprednisolone >2 mg/kg/day was prescribed in 76 patients, and among them, 20 patients with pulmonary lobar consolidation received high-dose methylprednisolone therapy. After 3 months, chest imaging revealed incomplete absorption of pulmonary lesions in seven patients. Among them, five patients with consolidation in more than one pulmonary lobe ultimately had slight BO.ConclusionIn hospitalized patients with MPP, particularly severe MPP, the ideal starting time of corticosteroid treatment might be 5–10 days, preferably 6–7 days, after disease onset. The initial dosage of corticosteroid therapy should be decided according to the severity of the disease. MPP patients with diffuse bronchiolitis-associated lesions/whole lobar consolidation on imaging might require high-dose corticosteroid therapy

    ATP-citrate lyase inhibitor improves ectopic lipid accumulation in the kidney in a db/db mouse model

    Get PDF
    AimWe evaluated a novel treatment for obesity-related renal, an ATP-citrate lyase (ACL) inhibitor, to attenuate ectopic lipid accumulation (ELA) in the kidney and the ensuing inflammation.Materials and methodsAn ACL inhibitor was administered intragastrically to 12-week-old db/db mice for 30 days. The appearance of ELA was observed by staining kidney sections with Oil Red O, and the differences in tissue lipid metabolites were assessed by mass spectrometry. The anti-obesity and renoprotection effects of ACL inhibitors were observed by histological examination and multiple biochemical assays.ResultsUsing the AutoDock Vina application, we determined that among the four known ACL inhibitors (SB-204990, ETC-1002, NDI-091143, and BMS-303141), BMS-303141 had the highest affinity for ACL and reduced ACL expression in the kidneys of db/db mice. We reported that BMS-303141 administration could decrease the levels of serum lipid and renal lipogenic enzymes acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), HMG-CoA reductase (HMGCR), and diminish renal ELA in db/db mice. In addition, we found that reducing ELA improved renal injuries, inflammation, and tubulointerstitial fibrosis.ConclusionACL inhibitor BMS-303141 protects against obesity-related renal injuries

    The mechanisms underlying the actions of Xuefu Zhuyu decoction pretreatment against neurological deficits after ischemic stroke in mice: The mediation of glymphatic function by aquaporin-4 and its anchoring proteins

    Get PDF
    Ischemic stroke (IS) has been associated with an impairment in glymphatic function. Xuefu Zhuyu Decoction (XFZYD) is widely used in the prevention and treatment of ischemic stroke. We hypothesized that Xuefu Zhuyu decoction pretreatment could attenuate early neurological deficits after ischemic stroke by enhancing the function of the glymphatic system. To prove our hypothesis, we carried out temporary middle cerebral artery occlusion and reperfusion surgery on C57BL/6 mice and then measured neurological score, infarct size and performed hematoxylin-eosin staining to assess stroke outcomes after 24 h of reperfusion. Subsequently, we injected fluorescent tracers in to the cisterna magna and evaluated tracer distribution in coronal brain sections. The polarization of aquaporin-4 (AQP4), colocalization of aquaporin-4, α-dystroglycan, β-dystroglycan and agrin were determined by immunofluorescence. Our research showed that pretreatment with Xuefu Zhuyu decoction significantly alleviated neurological scores, neurological deficits and pathological abnormalities in a mouse model of ischemic stroke. Importantly, Xuefu Zhuyu decoction pretreatment enhanced cerebrospinal fluid influx, protected aquaporin-4 depolarization and promoted the colocalization of aquaporin-4 with its anchoring proteins in the brain. Our findings highlight novel mechanisms underlying the neuroprotective effect of Xuefu Zhuyu decoction pretreatment on ischemic stroke-induced brain damage through the glymphatic system. Xuefu Zhuyu decoction pretreatment may offer a promising approach to slow the onset and progression of ischemic stroke

    RPRD1A and RPRD1B Are Human RNA Polymerase II C-Terminal Domain Scaffolds for Ser5 Dephosphorylation

    Get PDF
    The RNA polymerase II (RNAPII) carboxyl-terminal domain (CTD) heptapeptide repeats (Y1-S2-P3-T4-S5-P6-S7) undergo dynamic phosphorylation and dephosphorylation during the transcription cycle to recruit factors that regulate transcription, RNA processing and chromatin modification. We show here that RPRD1A and RPRD1B form homodimers and heterodimers through their coiled-coil domains and interact preferentially via CTD interaction domains (CIDs) with CTD repeats phosphorylated at S2 and S7. Our high resolution crystal structures of the RPRD1A, RPRD1B and RPRD2 CIDs, alone and in complex with CTD phosphoisoforms, elucidate the molecular basis of CTD recognition. In an interesting example of cross-talk between different CTD modifications, our data also indicate that RPRD1A and RPRD1B associate directly with RPAP2 phosphatase and, by interacting with CTD repeats where phospho-S2 and/or phospho-S7 bracket a phospho-S5 residue, serve as CTD scaffolds to coordinate the dephosphorylation of phospho-S5 by RPAP2

    A Search for Light Fermionic Dark Matter Absorption on Electrons in PandaX-4T

    Full text link
    We report a search on a sub-MeV fermionic dark matter absorbed by electrons with an outgoing active neutrino using the 0.63 tonne-year exposure collected by PandaX-4T liquid xenon experiment. No significant signals are observed over the expected background. The data are interpreted into limits to the effective couplings between such dark matter and electrons. For axial-vector or vector interactions, our sensitivity is competitive in comparison to existing astrophysical bounds on the decay of such dark matter into photon final states. In particular, we present the first direct detection limits for an axial-vector (vector) interaction which are the strongest in the mass range from 25 to 45 (35 to 50) keV/c2^2

    Search for light dark matter from atmosphere in PandaX-4T

    Full text link
    We report a search for light dark matter produced through the cascading decay of η\eta mesons, which are created as a result of inelastic collisions between cosmic rays and Earth's atmosphere. We introduce a new and general framework, publicly accessible, designed to address boosted dark matter specifically, with which a full and dedicated simulation including both elastic and quasi-elastic processes of Earth attenuation effect on the dark matter particles arriving at the detector is performed. In the PandaX-4T commissioning data of 0.63 tonne\cdotyear exposure, no significant excess over background is observed. The first constraints on the interaction between light dark matter generated in the atmosphere and nucleus through a light scalar mediator are obtained. The lowest excluded cross-section is set at 5.9×1037cm25.9 \times 10^{-37}{\rm cm^2} for dark matter mass of 0.10.1 MeV/c2/c^2 and mediator mass of 300 MeV/c2/c^2. The lowest upper limit of η\eta to dark matter decay branching ratio is 1.6×1071.6 \times 10^{-7}
    corecore