63 research outputs found

    Design and real-time implementation of data-driven adaptive wide-area damping controller for back-to-back VSC-HVDC

    Get PDF
    This paper proposes a data-driven adaptive wide-area damping controller (D-WADC) for back-to-back VSC-HVDC to suppress the low frequency oscillation in a large-scale interconnected power system. The proposed D-WADC adopts a dual-loop control structure to make full use of the active and reactive power control of VSC-HVDC to improve the damping of the power system. A data-driven algorithm named the goal representation heuristic dynamic programming is employed to design the proposed D-WADC, which means the design procedure only requires the input and output data rather than the mathematic model of the concerned power system. Thus, the D-WADC can adapt to the change of operating condition through online weight modification. Besides, the adaptive delay compensator (ADC) is added to effectively compensate the stochastic delay involved in the wide-area feedback signal. Case studies are conducted based on the simplified model of a practical power system and the 16-machine system with a back-to-back VSC-HVDC. Both the simulation and hardware-in-loop experiment results verify that the proposed D-WADC can effectively suppress the low-frequency oscillation under a wide range of operating conditions, disturbances, and stochastic communication delays

    Integrated spatial multiplexing of heralded single photon sources

    Full text link
    The non-deterministic nature of photon sources is a key limitation for single photon quantum processors. Spatial multiplexing overcomes this by enhancing the heralded single photon yield without enhancing the output noise. Here the intrinsic statistical limit of an individual source is surpassed by spatially multiplexing two monolithic silicon correlated photon pair sources, demonstrating a 62.4% increase in the heralded single photon output without an increase in unwanted multi-pair generation. We further demonstrate the scalability of this scheme by multiplexing photons generated in two waveguides pumped via an integrated coupler with a 63.1% increase in the heralded photon rate. This demonstration paves the way for a scalable architecture for multiplexing many photon sources in a compact integrated platform and achieving efficient two photon interference, required at the core of optical quantum computing and quantum communication protocols.Comment: 10 pages, 3 figures, comments welcom

    Impact of Power Grid Strength and PLL Parameters on Stability of Grid-Connected DFIG Wind Farm

    Get PDF
    This paper investigates the impact of power grid strength and phase-locked loop (PLL) parameters on small signal stability of grid-connected doubly fed induction generator (DFIG)-based wind farm. Modal analysis of the grid-connected DFIG wind turbine under different operating conditions and various power grid strengths are investigated at first. Modal analysis results reveal that the DFIG connected to a weak grid may easily lose stability under the heavy-duty operating conditions due to PLL oscillation. The object of this paper is to identify the PLL oscillation mechanism as well as influence factors and propose a damping solution for this oscillation mode. A simplified linear system model of the grid-connected DFIG wind turbine is proposed for analyzing the PLL oscillation. Through the complex torque coefficients method and using this model, the oscillation mechanism and influence factors including the power grid strength and the PLL parameters are identified. To suppress this PLL oscillation, a mixed H2/H∞ robust damping controller is proposed and designed for the DFIG. Electromagnetic transient simulation results of both single-DFIG system and multiply-DFIG system verify the correctness of the analysis results and effectiveness of the proposed damping controller

    Low Raman-noise correlated photon-pair generation in a dispersion-engineered chalcogenide As2S3 planar waveguide

    No full text
    We demonstrate low Raman-noise correlated photon-pair generation in a dispersion-engineered 10 mm As2S3 chalcogenide waveguide at room temperature. We show a coincidence-to-accidental ratio (CAR) of 16.8, a 250 times increase compared with previously published results in a chalcogenide waveguide, with a corresponding brightness of 3×105  pairs·s−1·nm−1 generated at the chip. Dispersion engineering of our waveguide enables photon passbands to be placed in the low spontaneous Raman scattering (SpRS) window at 7.4 THz detuning from the pump. This Letter shows the potential for As2S3 chalcogenide to be used for nonlinear quantum photonic devices.This work was supported by the Centre of Excellence, Federation Fellowship, and Discovery Early Career Researcher Award (DECRA) programs of the Australian Research Council (ARC). The Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS) is an ARC Centre of Excellence (project number CE110001018)

    The enormous repetitive Antarctic krill genome reveals environmental adaptations and population insights

    Get PDF
    Antarctic krill (Euphausia superba) is Earth’smost abundant wild animal, and its enormous biomass is vital to the Southern Ocean ecosystem. Here, we report a 48.01-Gb chromosome-level Antarctic krill genome, whose large genome size appears to have resulted from inter-genic transposable element expansions. Our assembly reveals the molecular architecture of the Antarctic krill circadian clock and uncovers expanded gene families associated with molting and energy metabolism, providing insights into adaptations to the cold and highly seasonal Antarctic environment. Population-level genome re-sequencing from four geographical sites around the Antarctic continent reveals no clear population structure but highlights natural selection associated with environmental variables. An apparent drastic reduction in krill population size 10 mya and a subsequent rebound 100 thousand years ago coincides with climate change events. Our findings uncover the genomic basis of Antarctic krill adaptations to the Southern Ocean and provide valuable resources for future Antarctic research

    Integrated Nonlinear Single-Photon Light Sources

    No full text
    Quantum information science has vast potential for revolutionary technologies such as communi-cation, computation and precision measurements. One approach in realising these goals is to use single photons, the indivisible quanta of light particles. However, to date, the majority of optical quantum experiments use bulk optical components, and the physical size of these components limit the complexity and stability of those experiments. Recently, there has been a trend to integrate op-tical quantum experiments into monolithic photonic integrated circuits, usually with footprints in the order of centimetres or smaller. One of the challenges is the miniaturisation of non-classical quan-tum light sources, suitable for the on-chip integration with other devices. In in thesis, I will give an overview to the development of quantum optics and integrated photonics, and subsequently discuss different chalcogenide glass and silicon photonic nanostructures for on-chip single-photon generation

    Long-Term Stable Online Acetylene Detection by a CEAS System with Suppression of Cavity Length Drift

    No full text
    A trace acetylene (C2H2) detection system was demonstrated using the cavity-enhanced absorption spectroscopy (CEAS) technique and a near-infrared distributed feedback (NIR-DFB) laser. A Fabry⁻Perot (F⁻P) cavity with an effective optical path length of 49.7 m was sealed and employed as a gas absorption cell. Co-axis cavity alignment geometry was adopted to acquire a larger transmitted light intensity and a higher sensitivity compared with off-axis geometry. The laser frequency was locked to the cavity fundamental mode (TEM00 mode) by using the Pound⁻Drever⁻Hall (PDH) technique continuously. By introducing a cavity length-locking loop, the drift of the cavity length was suppressed, and the stability of the system was enhanced. To demonstrate the efficacy of the system, a C2H2 absorption spectrum near 6534.36 cm−1 was acquired by tuning the laser operation temperature. Measurements of C2H2 samples with different concentrations were carried out, and a good linear relationship between C2H2 concentration and the cavity-transmitted signal voltage was observed. The measurement results showed the system could work stably for more than 2 h without major fluctuations. The Allan variance analysis results demonstrated a detection limit of 9 parts-per-billion (ppb) with an averaging time of 11 s corresponding to a minimum detectable absorption coefficient of 1.1 × 10−8 cm−1

    Optimal Real-Time Operation Strategy for Microgrid: An ADP-Based Stochastic Nonlinear Optimization Approach

    Get PDF
    This paper proposes an approximate dynamic programming (ADP) based algorithm for the real-time operation of the microgrid under uncertainties. First, the optimal operation of the microgrid is formulated as a stochastic mixed-integer nonlinear programming (MINLP) problem, combining the ac power flow and the detailed operational character of the battery. For this NP-hard problem, the proposed ADP based energy management algorithm decomposes the original multitime periods MINLP problem into single-time period nonlinear programming problems. Thus, the sequential decisions can be made by solving Bellman\u27s equation. Historical data is utilized offline to improve the optimality of the real-time decision, and the dependency on the forecast information is reduced. Comparative numerical simulations with several existing methods demonstrate the effectiveness and efficiency of the proposed algorithm

    Error Analysis of Heterodyne Interferometry Based on One Single-Mode Polarization-Maintaining Fiber

    No full text
    Using polarization-maintaining fiber (PMF) in dual-frequency heterodyne interferometry has the advantages of reducing the laser’s own drift, obtaining high-quality light spots, and improving thermal stability. Using only one single-mode PMF to achieve the transmission of dual-frequency orthogonal, linearly polarized beam requires angular alignment only once to realize the transmission of dual-frequency orthogonal, linearly polarized light, avoiding coupling inconsistency errors, so that it has the advantages of high efficiency and low cost. However, there are still many nonlinear influencing factors in this method, such as the ellipticity and non-orthogonality of the dual-frequency laser, the angular misalignment error of the PMF, and the influence of temperature on the output beam of the PMF. This paper uses the Jones matrix to innovatively construct an error analysis model for the heterodyne interferometry using one single-mode PMF, to realize the quantitative analysis of various nonlinear error influencing factors, and clarify that the main error source is the angular misalignment error of the PMF. For the first time, the simulation provides a goal for the optimization of the alignment scheme of the PMF and the improvement of the accuracy to the sub-nanometer level. In actual measurement, the angular misalignment error of the PMF needs to be smaller than 2.87° to achieve sub-nanometer interference accuracy, and smaller than 0.25° to make the influence smaller than ten picometers. It provides theoretical guidance and an effective means for improving the design of heterodyne interferometry instruments based on PMF and further reducing measurement errors
    • …
    corecore