274 research outputs found

    PEG3 binds to H19-ICR as a transcriptional repressor

    Get PDF
    © 2016 Taylor & Francis Group, LLC. Paternally expressed gene 3 (Peg3) encodes a DNA-binding protein with 12 C2H2 zinc finger motifs. In the current study, we performed ChIP-seq using mouse embryonic fibroblast (MEF) cells. This experiment identified a set of 16 PEG3 genomic targets, the majority of which overlapped with the promoter regions of genes with oocyte expression. These potential downstream genes were upregulated in MEF cells lacking PEG3 protein, suggesting a potential repressor role for PEG3. Our study also identified the imprinting control region (ICR) of H19 as a genomic target. According to the results, PEG3 binds to a specific sequence motif located between the 3rd and 4th CTCF binding sites of the H19-ICR. PEG3 also binds to the active maternal allele of the H19-ICR. The expression levels of H19 were upregulated in MEF cells lacking PEG3, and this upregulation was mainly derived from the maternal allele. This suggests that PEG3 may function as a transcriptional repressor for the maternal allele of H19. Overall, the current study uncovers a potential functional relationship between Peg3 and H19, and also confirms PEG3 as a transcriptional repressor for the identified downstream genes

    Paternally expressed Peg3 controls maternally expressed Zim1 as a trans factor

    Get PDF
    © 2014 Ye et al. The expression of two adjacent imprinted genes, Peg3 and Zim1, is inversely correlated: down-regulation of Peg3 coinciding with up-regulation of Zim1. The current study characterized this inverse correlation using a mutant allele targeting Peg3. According to the results, the mutation on the paternal allele of Peg3 resulted in a dramatic increase in the transcription levels of the maternal allele of Zim1, suggesting the involvement of unknown trans factors in this trans-allelic event. Subsequent ChIP experiments revealed that the protein encoded by Peg3 itself binds to the zinc finger exon of Zim1, which is modified with the repression mark H3K9me3. Interestingly, the levels of H3K9me3 on Zim1 are also reduced in the mutant cells lacking the protein PEG3, suggesting potential roles for PEG3 in establishing H3K9me3 on Zim1. Reintroducing PEG3 into the mutant cell restored down-regulation of Zim1, confirming the predicted repressor role for Peg3 on Zim1. Overall, these results demonstrated that paternally expressed Peg3 controls maternally expressed Zim1 as a trans factor. The current study also provides the first case for the trans-allelic interaction of two oppositely imprinted genes through their gene products

    Inversion of the imprinting control region of the Peg3 domain

    Get PDF
    © 2017 Kim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The imprinting of the mouse Peg3 domain is controlled through a 4-kb genomic region encompassing the bidirectional promoter and 1st exons of Peg3 and Usp29. In the current study, this ICR was inverted to test its orientation dependency for the transcriptional and imprinting control of the Peg3 domain. The inversion resulted in the exchange of promoters and 1st exons between Peg3 and Usp29. Paternal transmission of this inversion caused 10-fold down-regulation of Peg3 and 2-fold up-regulation of Usp29 in neonatal heads, consistent with its original promoter strength in each direction. The paternal transmission also resulted in reduced body size among the animals, which was likely contributed by the dramatic down-regulation of Peg3. Transmission through either allele caused no changes in the DNA methylation and imprinting status of the Peg3 domain except that Zfp264 became bi-allelic through the maternal transmission. Overall, the current study suggests that the orientation of the Peg3-ICR may play no role in its allele-specific DNA methylation, but very critical for the transcriptional regulation of the entire imprinted domain

    Transcriptional truncation of the long coding imprinted gene Usp29

    Get PDF
    © 2016 He et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Usp29 (Ubiquitin-specific protease 29) is a paternally expressed gene located upstream of another imprinted gene Peg3. In the current study, the transcription of this long coding gene spanning a 250-kb genomic distance was truncated using a knockin allele. According to the results, paternal transmission of the mutant allele resulted in reduced body and litter sizes whereas the maternal transmission caused no obvious effects. In the paternal mutant, the expression levels of Usp29 were reduced to 14-18% level of the wild-type littermates due to the Poly-A signal included in the knockin cassette. Expression analyses further revealed an unusual female-specific up-regulation of the adjacent imprinted gene Zfp264 in the mutant. Consistent with this, the promoter of Zfp264 was hypomethylated only in the female mutant. Interestingly, this female-specific hypomethylation by the knockin allele was not detected in the offspring of an interspecific crossing, indicating its sensitivity to genetic background. Overall, the results suggest that the transcription of Usp29 may be involved in DNA methylation setting of Zfp264 promoter in a sex-specific manner

    YY1\u27s role in the Peg3 imprinted domain

    Get PDF
    © 2017 The Author(s). The ICR (Imprinting Control Region) of the Peg3 (Paternally Expressed Gene 3) domain contains an unusual cluster of YY1 binding sites. In the current study, these YY1 binding sites were mutated to characterize the unknown roles in the mouse Peg3 domain. According to the results, paternal and maternal transmission of the mutant allele did not cause any major effect on the survival of the pups. In the mutants, the maternal-specific DNA methylation on the ICR was properly established and maintained, causing no major effect on the imprinting of the domain. In contrast, the paternal transmission resulted in changes in the expression levels of several genes: down-regulation of Peg3 and Usp29 and up-regulation of Zim1. These changes were more pronounced during the neonatal stage than during the adult stage. In the case of Peg3 and Zim1, the levels of the observed changes were also different between males and females, suggesting the different degrees of YY1 involvement between two sexes. Overall, the results indicated that YY1 is mainly involved in controlling the transcriptional levels, but not the DNA methylation, of the Peg3 domain

    Parental and sexual conflicts over the Peg3 imprinted domain

    Get PDF
    © 2016 The Author(s). In the current study, the imprinting control region of the mouse Peg3 domain was deleted to test its functional impact on animal growth and survival. The paternal transmission of the deletion resulted in complete abolition of the transcription of two paternally expressed genes, Peg3 and Usp29, causing the reduced body weight of the pups. In contrast, the maternal transmission resulted in the unexpected transcriptional up-regulation of the remaining paternal allele of both Peg3 and Usp29, causing the increased body weight and survival rates. Thus, the imprinted maternal allele of the ICR may be a suppressor antagonistic to the active paternal allele of the ICR, suggesting a potential intralocus allelic conflict. The opposite outcomes between the two transmissions also justify the functional compromise that the maternal allele has become epigenetically repressed rather than genetically deleted during mammalian evolution. The mice homozygous for the deletion develop normally but with a skewed sex ratio, one male per litter, revealing its sex-biased effect. Overall, the Peg3 locus may have evolved to an imprinted domain to cope with both parental and sexual conflicts driven by its growth-stimulating paternal versus growth-suppressing maternal alleles

    Impacts of the Three Gorges Project on the Hydrological Regime in the Jingjiang Reach of the Yangtze River

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv

    BOURNE: Bootstrapped Self-supervised Learning Framework for Unified Graph Anomaly Detection

    Full text link
    Graph anomaly detection (GAD) has gained increasing attention in recent years due to its critical application in a wide range of domains, such as social networks, financial risk management, and traffic analysis. Existing GAD methods can be categorized into node and edge anomaly detection models based on the type of graph objects being detected. However, these methods typically treat node and edge anomalies as separate tasks, overlooking their associations and frequent co-occurrences in real-world graphs. As a result, they fail to leverage the complementary information provided by node and edge anomalies for mutual detection. Additionally, state-of-the-art GAD methods, such as CoLA and SL-GAD, heavily rely on negative pair sampling in contrastive learning, which incurs high computational costs, hindering their scalability to large graphs. To address these limitations, we propose a novel unified graph anomaly detection framework based on bootstrapped self-supervised learning (named BOURNE). We extract a subgraph (graph view) centered on each target node as node context and transform it into a dual hypergraph (hypergraph view) as edge context. These views are encoded using graph and hypergraph neural networks to capture the representations of nodes, edges, and their associated contexts. By swapping the context embeddings between nodes and edges and measuring the agreement in the embedding space, we enable the mutual detection of node and edge anomalies. Furthermore, we adopt a bootstrapped training strategy that eliminates the need for negative sampling, enabling BOURNE to handle large graphs efficiently. Extensive experiments conducted on six benchmark datasets demonstrate the superior effectiveness and efficiency of BOURNE in detecting both node and edge anomalies

    Detection of copy number variations based on a local distance using next-generation sequencing data

    Get PDF
    As one of the main types of structural variation in the human genome, copy number variation (CNV) plays an important role in the occurrence and development of human cancers. Next-generation sequencing (NGS) technology can provide base-level resolution, which provides favorable conditions for the accurate detection of CNVs. However, it is still a very challenging task to accurately detect CNVs from cancer samples with different purity and low sequencing coverage. Local distance-based CNV detection (LDCNV), an innovative computational approach to predict CNVs using NGS data, is proposed in this work. LDCNV calculates the average distance between each read depth (RD) and its k nearest neighbors (KNNs) to define the distance of KNNs of each RD, and the average distance between the KNNs for each RD to define their internal distance. Based on the above definitions, a local distance score is constructed using the ratio between the distance of KNNs and the internal distance of KNNs for each RD. The local distance scores are used to fit a normal distribution to evaluate the significance level of each RDS, and then use the hypothesis test method to predict the CNVs. The performance of the proposed method is verified with simulated and real data and compared with several popular methods. The experimental results show that the proposed method is superior to various other techniques. Therefore, the proposed method can be helpful for cancer diagnosis and targeted drug development
    corecore