9 research outputs found

    Over-expression of glutamine synthetase genes Gln1-3/Gln1-4 improved nitrogen assimilation and maize yields

    Get PDF
    In agriculture, certain fertilizers that contain nitrogen generally tend to provide the most macronutrients for plant growth and development. The cDNAs of Gln1-3 and Gln1-4 genes, encoding glutamine synthetase isoenzymes (GS1), were fused to the rice actin1 promoter and over-expressed in the inbred maize line DH9632 by AgrobacteÂŹrium-mediated genetic transformation. PCR assays demonstrated the integration of these genes in six transgenic lines. Transcription of Gln1-3 or Gln1-4 in the transformants was also confirmed by semi-quantitative RT-PCR and qRT-PCR; the transgenic lines had significantly higher expression compared with wild type. Transgenic lines L2 and L7 expressed the most Gln1-3 and Gln1-4 mRNA, respectively, and had the most enzyme activity in leaves below the ear after pollination for 14 days. Over-expression of these two genes led to increased chlorophyll conÂŹtent and improved photosynthesis after 14 days. In addition, yield-related traits such as ear length, ear diameter, ear weight, grain weight per ear, and hundred-kernel weight were improved in the transgenic lines. The plot yield of transgenic L2 was increased by approximately 20%. These results suggest that overexpression of Gln1-3 and Gln1-4 in maize improves yields and enhances nitrogen using efficiency. Thus, transgenic lines overexpressing Gln1-3 or Gln1-4 in maize could potentially be used in maize breeding

    “Mn-locking” effect by anionic coordination manipulation stabilizing Mn-rich phosphate cathodes

    Get PDF
    High-voltage cathodes with high power and stable cyclability are needed for high-performance sodium-ion batteries. However, the low kinetics and inferior capacity retention from structural instability impede the development of Mn-rich phosphate cathodes. Here, we propose light-weight fluorine (F) doping strategy to decrease the energy gap to 0.22 eV from 1.52 eV and trigger a “Mn-locking” effect—to strengthen the adjacent chemical bonding around Mn as confirmed by density functional theory calculations, which ensure the optimized Mn ligand framework, suppressed Mn dissolution, improved structural stability and enhanced electronic conductivity. The combination of in situ and ex situ techniques determine that the F dopant has no influence on the Na+ storage mechanisms. As a result, an outstanding rate performance up to 40C and an improved cycling stability (1000 cycles at 20C) are achieved. This work presents an effective and widely available light-weight anion doping strategy for high-performance polyanionic cathodes

    Reversible Zn metal anodes enabled by trace amounts of underpotential deposition initiators

    Get PDF
    Routine electrolyte additives are not effective enough for uniform zinc (Zn) deposition, because they are hard to proactively guide atomic-level Zn deposition. Here, based on underpotential deposition (UPD), we propose an "escort effect" of electrolyte additives for uniform Zn deposition at the atomic level. With nickel ion (Ni2+) additives, we found that metallic Ni deposits preferentially and triggers the UPD of Zn on Ni. This facilitates firm nucleation and uniform growth of Zn while suppressing side reactions. Besides, Ni dissolves back into the electrolyte after Zn stripping with no influence on interfacial charge transfer resistance. Consequently, the optimized cell operates for over 900 h at 1 mA cm-2 (more than 4 times longer than the blank one). Moreover, the universality of "escort effect" is identified by using Cr3+ and Co2+ additives. This work would inspire a wide range of atomic-level principles by controlling interfacial electrochemistry for various metal batteries

    Mosaicism of the UDP-Galactose Transporter SLC35A2 Causes a Congenital Disorder of Glycosylation

    Get PDF
    Biochemical analysis and whole-exome sequencing identified mutations in the Golgi-localized UDP-galactose transporter SLC35A2 that define an undiagnosed X-linked congenital disorder of glycosylation (CDG) in three unrelated families. Each mutation reduced UDP-galactose transport, leading to galactose-deficient glycoproteins. Two affected males were somatic mosaics, suggesting that a wild-type SLC35A2 allele may be required for survival. In infancy, the commonly used biomarker transferrin showed abnormal glycosylation, but its appearance became normal later in childhood, without any corresponding clinical improvement. This may indicate selection against cells carrying the mutant allele. To detect other individuals with such mutations, we suggest transferrin testing in infancy. Here, we report somatic mosaicism in CDG, and our work stresses the importance of combining both genetic and biochemical diagnoses
    corecore