224 research outputs found

    Effects of Coptis extract combined with chemotherapeutic agents on ROS production, multidrug resistance, and cell growth in A549 human lung cancer cells

    Get PDF
    Background: Non–small cell lung cancer is associated with high expression of multidrug resistance (MDR) proteins and low production of reactive oxygen species (ROS). Coptis extract (COP), a Chinese medicinal herb, and its major constituent, berberine (BER), have anticancer properties. This study aims to investigate the effects of COP and BER combined with chemotherapeutic agents, including fluorouracil (5-FU), camptothecin (CPT), and paclitaxel (TAX), on cell proliferation, ROS production, and MDR in A549 human non-small cell lung cancer cells. Methods: A549 cells were treated with different doses of COP and BER, combined with 5-FU, CPT, and TAX. Cell viability was measured by an XTT (2,3-bis-(2-methoxy-4- nitro-5-sulfophenyl)-2 H-tetrazolium-5-carboxanilide) assay. Intracellular ROS levels were determined by measuring the oxidative conversion of cell permeable 2′,7′-dichlorofluorescein diacetate to fluorescent dichlorofluorescein. MDR of A549 cells was assessed by rhodamine 123 retention assay. Results: Both COP and BER significantly inhibited A549 cell growth in a dose-dependent manner. Combinations of COP or BER with chemotherapeutic agents (5-FU, CPT, and TAX) exhibited a stronger inhibitory effect on A549 cell growth. In addition, COP and BER increased ROS production and reduced MDR in A549 cells. Conclusion: As potential adjuvants to chemotherapy for non–small cell lung cancer, COP and BER increase ROS production, reduce MDR, and enhance the inhibitory effects of chemotherapeutic agents on A549 cell growth

    Catch the Butterfly: Peeking into the Terms and Conflicts among SPDX Licenses

    Full text link
    The widespread adoption of third-party libraries (TPLs) in software development has accelerated the creation of modern software. However, this convenience comes with potential legal risks. Developers may inadvertently violate the licenses of TPLs, leading to legal issues. While existing studies have explored software licenses and potential incompatibilities, these studies often focus on a limited set of licenses or rely on low-quality license data, which may affect their conclusions. To address this gap, there is a need for a high-quality license dataset that encompasses a broad range of mainstream licenses to help developers navigate the complex landscape of software licenses, avoid potential legal pitfalls, and guide solutions for managing license compliance and compatibility in software development. To this end, we conduct the first work to understand the mainstream software licenses based on term granularity and obtain a high-quality dataset of 453 SPDX licenses with well-labeled terms and conflicts. Specifically, we first conduct a differential analysis of the mainstream platforms to understand the terms and attitudes of each license. Next, we propose a standardized set of license terms to capture and label existing mainstream licenses with high quality. Moreover, we include copyleft conflicts and conclude the three major types of license conflicts among the 453 SPDX licenses. Based on these, we carry out two empirical studies to reveal the concerns and threats from the perspectives of both licensors and licensees. One study provides an in-depth analysis of the similarities, differences, and conflicts among SPDX licenses, revisits the usage and conflicts of licenses in the NPM ecosystem, and draws conclusions that differ from previous work. Our studies reveal some insightful findings and disclose relevant analytical data, which set the stage for further research.Comment: 10 pages, 6 figures, accepted by SANER202

    Progressive Conservative Adaptation for Evolving Target Domains

    Full text link
    Conventional domain adaptation typically transfers knowledge from a source domain to a stationary target domain. However, in many real-world cases, target data usually emerge sequentially and have continuously evolving distributions. Restoring and adapting to such target data results in escalating computational and resource consumption over time. Hence, it is vital to devise algorithms to address the evolving domain adaptation (EDA) problem, \emph{i.e.,} adapting models to evolving target domains without access to historic target domains. To achieve this goal, we propose a simple yet effective approach, termed progressive conservative adaptation (PCAda). To manage new target data that diverges from previous distributions, we fine-tune the classifier head based on the progressively updated class prototypes. Moreover, as adjusting to the most recent target domain can interfere with the features learned from previous target domains, we develop a conservative sparse attention mechanism. This mechanism restricts feature adaptation within essential dimensions, thus easing the inference related to historical knowledge. The proposed PCAda is implemented with a meta-learning framework, which achieves the fast adaptation of the classifier with the help of the progressively updated class prototypes in the inner loop and learns a generalized feature without severely interfering with the historic knowledge via the conservative sparse attention in the outer loop. Experiments on Rotated MNIST, Caltran, and Portraits datasets demonstrate the effectiveness of our method.Comment: 7 pages, 5 figure

    Leveraging Prototype Patient Representations with Feature-Missing-Aware Calibration to Mitigate EHR Data Sparsity

    Full text link
    Electronic Health Record (EHR) data frequently exhibits sparse characteristics, posing challenges for predictive modeling. Current direct imputation such as matrix imputation approaches hinge on referencing analogous rows or columns to complete raw missing data and do not differentiate between imputed and actual values. As a result, models may inadvertently incorporate irrelevant or deceptive information with respect to the prediction objective, thereby compromising the efficacy of downstream performance. While some methods strive to recalibrate or augment EHR embeddings after direct imputation, they often mistakenly prioritize imputed features. This misprioritization can introduce biases or inaccuracies into the model. To tackle these issues, our work resorts to indirect imputation, where we leverage prototype representations from similar patients to obtain a denser embedding. Recognizing the limitation that missing features are typically treated the same as present ones when measuring similar patients, our approach designs a feature confidence learner module. This module is sensitive to the missing feature status, enabling the model to better judge the reliability of each feature. Moreover, we propose a novel patient similarity metric that takes feature confidence into account, ensuring that evaluations are not based merely on potentially inaccurate imputed values. Consequently, our work captures dense prototype patient representations with feature-missing-aware calibration process. Comprehensive experiments demonstrate that designed model surpasses established EHR-focused models with a statistically significant improvement on MIMIC-III and MIMIC-IV datasets in-hospital mortality outcome prediction task. The code is publicly available at \url{https://github.com/yhzhu99/SparseEHR} to assure the reproducibility

    Cucurbitacin B inhibits proliferation, induces G2/M cycle arrest and autophagy without affecting apoptosis but enhances MTT reduction in PC12 cells

    Get PDF
    In the present study, the effect of cucurbitacin B (a natural product with anti-cancer effect) was studied on PC12 cells. It significantly reduced the cell number, changed cell morphology and inhibited colony formation while MTT results showed increased cell viability. Cucurbitacin B treatment increased activity of succinode hydrogenase. No alteration in the integrity of mem-brane, the release of lactic dehydrogenase, the mitochondrial membrane potential, and the expression of apoptotic proteins suggested that cucurbitacin B did not induce apoptosis. The cell cycle was remarkably arrested at G2/M phase. Furthermore, cucurbitacin B induced autophagy as evidence by accumulation of autophagic vacuoles and the increase of LC3II. In addition, cucurbitacin B up-regulated the expression of p-beclin-1, p-ULK1, p-Wee1, p21 and down-regulated p-mTOR, p-p70S6K, CDC25C, CDK1, Cyclin B1. In conclusion, cucurbitacin B inhibited PC12 proliferation but caused MTT pitfall. Cucurbitacin B induced G2/M cell cycle arrest, autophagy, but not the apoptosis in PC12 cells

    Using Two-stage Network to Segment Kidneys and Kidney Tumors

    Get PDF
    There are many new cases of kidney cancer each year, and surgery is the most common treatment. To assist doctors in surgical planning, an accurate and automatic kidney and tumor segmentation method is helpful in the clinical practice. In this paper, we propose a deep learning framework for the segmentation of kidneys and tumors in abdominal CT images. The key idea is using a two-stage strategy. First, for each case, we use a 3d U-shape convolution network to get the localization of each kidney. Then using next 3d U-shape convolution network we obtain the precise segmentation results of each kidney. Finally, merge the results to obtain the complete segmentation. Also, we try some tricks to improve the performance
    • …
    corecore