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Abstract. There are many new cases of kidney cancer each year, and
surgery is the most common treatment. To assist doctors in surgical
planning, an accurate and automatic kidney and tumor segmentation
method is helpful in the clinical practice. In this paper, we propose a
deep learning framework for the segmentation of kidneys and tumors in
abdominal CT images. The key idea is using a two-stage strategy. First,
for each case, we use a 3d U-shape convolution network to get the local-
ization of each kidney. Then using next 3d U-shape convolution network
we obtain the precise segmentation results of each kidney. Finally, merge
the results to obtain the complete segmentation. Also, we try some tricks
to improve the performance.
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1 Introduction

There are more than 400,000 new cases of kidney cancer each year, and surgery
is its most common treatment. Due to the wide variety in kidney and kidney
tumor morphology, there is currently great interest in how tumor morphology
relates to surgical outcomes, as well as in developing advanced surgical plan-
ning techniques. Automatic semantic segmentation is a promising tool for these
efforts, but morphological heterogeneity makes it a difficult problem. In this pa-
per, inspired by [1], we introduce a two-stage segmentation framework based on
DCNN, consisting of 1) a localization model to detect the interest of region con-
taining kidneys; 2) a segmentation model to focus on the region of one kidney
and obtain the segmentation result. Since the CT image is three dimensional
volume data and these organs are intrinsically 3d objects, DCNN filters learning
directly on the overall 3d CT volume enables capturing the complete spatial con-
text of organs. But due to the computational intensity and limit amount of GPU
memory, the input image cant be very large. Our method has two advantages:
on the one hand, we dont need high resolution image for localization task; on the
other hand, the segmentation model can only concentrate on the important local
region. Both reduce the sizes of input images and make the algorithm efficient.
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2 Method

As mentioned above, we first determine the region where kidneys are located.
Then we focus on this region to get fine segmentation.

2.1 Localization

Data preprocessing With CT intensity values being not standardized, nor-
malization is critical to allow for data from different processing types. First we
clip the CT at [-95, 155], and then we normalize each image independently by
subtracting the mean and dividing by the standard deviation.

Fig. 1. Network architecture. The number below the box refers to the number of output
channels

Network architecture Our network is inspired by the U-Net architecture [2]
and we refer to [3]. See Fig.1. Our architecture comprises of a context pathway
and a localization pathway. In the context pathway, residual blocks that we call
context modules are used. Every context module consists of two 3x3x3 convolu-
tional layers and a dropout layer (p = 0.3) is in between. Context modules are
connected by stride 2 3×3×3 convolutions. As going deeper, the context modules
give more abstract representations of lower image resolution. In the localization
pathway, we have three localization modules. Every localization module consists
of a 3 × 3 × 3 convolution, which halves the number of channels, followed by a
1 × 1 × 1 convolution. The upsampling module consists of an upsampling (size
2, stride 2) and a 3 × 3 × 3 convolution which halves the number of channels.
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Through upsampling and concatenating, a merged feature map is send to the
localization module. We employ deep supervision in the localization pathway by
integrating segmentation layers (3 × 3 × 3 convolution) at different levels of the
network and combining them via element-wise summation to form the final net-
work output. Throughout the network we use leaky ReLU non-linearities for all
feature maps. We furthermore replace the traditional batch normalization before
activation functions with instance normalization in the case of small batch size.

Training procedure Our network architecture is trained with 128× 128× 128
voxels obtained by zooming the original CT images and batch size 1, due to the
memory limitation of GPU. The employed optimizer is Adam with an initial
learning rate lr = 5 × 10−4 , the following learning rate schedule: after every
epoch, the learning rate is reduced to be 98.5% of the original and a L2 weight
decay of 10−5 . In order to deal with the class imbalance in the data, we use
a two-class Dice loss function, i.e. the weighted average of Dice loss functions
of the two classes, background and foreground (kidney and tumor) with weight
0.01 and 0.99. During training, flipping at three axes and rotating axis slices
on the fly is applied to prevent overfitting. Note that we segment the image to
obtain the localization.

Post-processing At inference phase, the prediction is upsampled by a nearest
neighbor interpolation to match the shape of the original input scan. After that,
for each organ, we remove the connect regions whose volumes are smaller than
5% of the volume of the maximal connect region.

2.2 Segmentation

Training data In essence, we use the similar network architecture and similar
training procedure to obtain the segmentation model except for using different
training data. Noting that the training data of the localization model is zoomed
from the original CT image, so its resolution is lower, which is enough for lo-
calization, but not good for segmentation. For saving the resolution as much as
possible, we clip the original data by extending the bounding box which exactly
contains the groundtruth of each kidney with 10 pixels in all directions. If one
side of this clipped cube is smaller than 64, we replace it by 64. That is, using
a bounding box of shape 64 × 64 × 64 to be the lower bound. After that, resize
the cube to 128 × 128 × 128 before sending it to the network.

Training procedure We only consider the difference with localization. First,
to reduce the clipping error, we add the online random translation to enlarge the
training data. Secondly, we use a multi-class weighted Dice loss of three classes,
background, kidney and tumor, with weights 0.01, 0.14, 0.85. Of course, now
the output channel number of the network should be 3, while in localization the
number is 2.
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Fig. 2. two-stage segmentation

Inference procedure At inference phase of our two-stage segmentation, we
first use the localization model to get a rough localization of kidneys, and basing
on this information to clip the original CT image and resize the clipped cube
containing only one kidney to 128×128×128. Then send this resized cube to the
segmentation model to obtain the fine segmentation result, which becomes the
final result after post-processing and returning to the original image. See Fig.2.

3 Results

We trained and evaluated our network on the KITS19 training dataset (210 CTs)
and test dataset (90 CTs)[4]. No external data was used and the network was
trained from scratch. We split the training dataset into two subsets, 200 CTs for
training, and 10 CTs for validation. On training subset, the kidney dice is 0.95,
and the tumor dice is 0.8; on validation subset, the kidney dice is 0.8, and the
tumor dice is 0.92.
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