120 research outputs found

    Germline mutations in an intermediate chain dynein cause primary ciliary dyskinesia

    Get PDF
    Primary ciliary dyskinesia (PCD) is a genetically heterogeneous, autosomal recessive disorder caused by abnormal ciliary ultrastructure and function, characterized clinically by otosino-pulmonary disease. Mutations in an intermediate chain dynein (DNAI1: IC78) have recently been described in PCD patients, with outer dynein arm (ODA) defects. The aims of the current study were to test for novel DNAI1 mutations in 13 PCD patients with ODA defects (from 7 unrelated families) and to assess genotype/phenotype correlations in patients and family members. A previously reported mutation (219+3insT) was detected in three PCD patients from two families. The opposite allele had the novel missense mutation G1874C (W568S) in both affected individuals from one family, and a nonsense mutation G1875A (W568X) in an affected individual from another family. The tryptophan at position 568 is a highly conserved residue in the WD-repeat region, and a mutation is predicted to lead to abnormal folding of the protein and loss of function. None of these mutations were found in 32 other PCD patients with miscellaneous ciliary defects. Mutations in DNAI1 are causative for PCD with ODA defects, and are likely the genetic origin of clinical disease in some PCD patients with ultrastructural defects in the ODA

    Clinical Features and Associated Likelihood of Primary Ciliary Dyskinesia in Children and Adolescents

    Get PDF
    Rationale: Primary ciliary dyskinesia (PCD), a genetically heterogeneous, recessive disorder of motile cilia, is associated with distinct clinical features. Diagnostic tests, including ultrastructural analysis of cilia, nasal nitric oxide measurements, and molecular testing for mutations in PCD genes, have inherent limitations

    Is there adaptation in the ozone mortality relationship: A multi-city case-crossover analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ozone has been associated with daily mortality, mainly in the summer period. Despite the ample literature on adaptation of inflammatory and pulmonary responses to ozone, and the link, in cohort studies, between lung function and mortality risk there has been little done to date to examine the question of adaptation in the acute mortality risk associated with ambient ozone.</p> <p>Methods</p> <p>We applied a case-crossover design in 48 US cities to examine the ozone effect by season, by month and by age groups, particularly focusing on whether there was an adaptation effect.</p> <p>Results</p> <p>We found that the same day ozone effect was highest in summer with a 0.5% (95% CI: 0.38, 0.62) increase in total mortality for 10 ppb increase in 8-hr ozone, whilst the effect decrease to null in autumn and winter. We found higher effects in the months May- July with a 0.46% (95% CI: 0.24, 0.68) increase in total mortality for 10 ppb increase in ozone in June, and a 0.65% (95% CI: 0.47, 0.82) increase in mortality during July. The effect decreased in August and became null in September. We found similar effects from the age group 51–60 up to age 80 and a lower effect in 80 years and older.</p> <p>Conclusion</p> <p>The mortality effects of ozone appear diminished later in the ozone season, reaching the null effect previously reported in winter by September. More work should address this issue and examine the biological mechanism of adaptation.</p

    Clinical features of childhood primary ciliary dyskinesia by genotype and ultrastructural phenotype

    Get PDF
    Rationale: The relationship between clinical phenotype of childhood primary ciliary dyskinesia (PCD) and ultrastructural defects and genotype is poorly defined. Objectives: To delineate clinical features of childhood PCD and their associations with ultrastructural defects and genotype. Methods: A total of 118 participants younger than 19 years old with PCD were evaluated prospectively at six centers in North America using standardized procedures for diagnostic testing, spirometry, chest computed tomography, respiratory cultures, and clinical phenotyping. Measurements and Main Results: Clinical features included neonatal respiratory distress (82%), chronic cough (99%), and chronic nasal congestion (97%). There were no differences in clinical features or respiratory pathogens in subjects with outer dynein arm (ODA) defects (ODA alone; n = 54) and ODA plus inner dynein arm (IDA) defects (ODA 1 IDA; n = 18) versus subjects with IDA and central apparatus defects with microtubular disorganization (IDA/ CA/MTD; n = 40). Median FEV 1 was worse in the IDA/CA/MTD group (72% predicted) versus the combined ODA groups (92% predicted; P = 0.003). Median body mass index was lower in the IDA/ CA/MTD group (46th percentile) versus the ODA groups (70th percentile; P = 0.003). For all 118 subjects, median number of lobes with bronchiectasis was three and alveolar consolidation was two. However, the 5- to 11-year-old IDA/CA/MTD group had more lobes of bronchiectasis (median, 5; P = 0.0008) and consolidation (median, 3; P = 0.0001) compared with the ODA groups (median, 3 and 2, respectively). Similar findings were observed when limited to participants with biallelic mutations. Conclusions: Lung disease was heterogeneous across all ultrastructural and genotype groups, but worse in those with IDA/ CA/MTD ultrastructural defects, most of whom had biallelic mutations in CCDC39 or CCDC40

    Primary Ciliary Dyskinesia in Amish Communities

    Get PDF
    Primary ciliary dyskinesia (PCD) is an autosomal recessive multigenic disease that results in impaired mucociliary clearance. We have diagnosed 9 subjects with primary ciliary dyskinesia from geographically dispersed Amish communities, based on clinical characteristics and ciliary ultrastructural defects. Despite consanguinity, affected individuals had evidence of genetic heterogeneity

    Founder Mutation in RSPH4A Identified in Patients of Hispanic Descent with Primary Ciliary Dyskinesia

    Get PDF
    Primary ciliary dyskinesia (PCD) is a rare, autosomal recessive, genetically heterogeneous disorder characterized by ciliary dysfunction resulting in chronic oto-sino-pulmonary disease, respiratory distress in term neonates, laterality (situs) defects, and bronchiectasis. Diagnosis has traditionally relied on ciliary ultrastructural abnormalities seen by electron microscopy. Mutations in radial spoke head proteins occur in PCD patients with central apparatus defects. Advances in genetic testing have been crucial in addressing the diagnostic challenge. Here, we describe a novel splice-site mutation (c.921+3_6delAAGT) in RSPH4A, which leads to a premature translation termination signal in nine subjects with PCD (seven families). Loss-of-function was confirmed with quantitative ciliary ultrastructural analysis, measurement of ciliary beat frequency and waveform, and transcript analysis. All nine individuals carrying c.921+3_6delAAGT splice-site mutation in RSPH4A were Hispanic with ancestry tracing to Puerto Rico. This mutation is a founder mutation and a common cause of PCD without situs abnormalities in patients of Puerto Rican descent

    Standardizing nasal nitric oxide measurement as a test for primary ciliary dyskinesia

    Get PDF
    Rationale: Several studies suggest that nasal nitric oxide (nNO) measurement could be a test for primary ciliary dyskinesia (PCD), but the procedure and interpretation have not been standardized. Objectives: Touse a standard protocol formeasuringnNOtoestablishadiseasespecific cutoff value at one site, and then validate at six other sites. Methods: At the lead site, nNO was prospectively measured in individuals later confirmed to have PCD by ciliary ultrastructural defects (n = 143) or DNAH11 mutations (n = 6); and in 78 healthy and 146 disease control subjects, including individuals with asthma (n = 37), cystic fibrosis (n = 77), and chronic obstructive pulmonary disease (n = 32). A disease-specific cutoff value was determined, using generalized estimating equations (GEEs). Six other sites prospectively measured nNO in 155 consecutive individuals enrolled for evaluation for possible PCD. Measurements and Main Results: At the lead site, nNO values in PCD (mean6standard deviation, 20.7624.1 nl/min; range, 1.5-207.3 nl/min) only rarely overlapped with the nNO values of healthy control subjects (304.6 6 118.8; 125.5-867.0 nl/min), asthma (267.8 6 103.2; 125.0-589.7 nl/min), or chronic obstructive pulmonary disease (223.7 6 87.1; 109.7-449.1 nl/min); however, therewas overlapwith cystic fibrosis (134.0673.5; 15.6-386.1 nl/min). The disease-specific nNOcutoff valuewas defined at 77 nl/minute (sensitivity, 0.98; specificity, .0.999). At six other sites, this cutoff identified 70 of the 71 (98.6%) participants with confirmed PCD. Conclusions: Using a standardized protocol in multicenter studies, nNO measurement accurately identifies individuals with PCD, and supports its usefulness as a test to support the clinical diagnosis of PCD
    • …
    corecore