1,599 research outputs found
Bio-Diversity Conservation and Natural Resource Regeneration Through Watershed Development at Jhansi
Seven microwatersheds with an area of 5395 ha located at Kharaiya Nala Watershed (Jhansi) were fully treated with appropriate soil and water conservation measures. Barren village common lands consisting of 665 ha on ridges were fully rehabilitated through silvipasture. Treatment on watershed basis had a great impact in containing soil and run off water losses and improving agriculture and animal production. Development of common lands through soil and water conservation helped with faster ecological succession of grasses and regeneration of rootstocks resulted in bio-diversity conservation. Increased land and biomass productivity reflected on the socio-economic gains of the farmers including landless poor
A microangiographic study of the effect of hyperthermia on the rabbit bladder
A model was used to study the effect of hyperthermia on a normal tissue. The model selected was the rabbit bladder and the end point measured was the changes in the micro-vasculature of the bladder wall. It was already demonstrated clinically that hot water bladder infusions produce regression in bladder tumors
Nanopattern formation in self-assembled monolayers of thiol-capped Au nanocrystals
The structure and the stability of the transferred monolayers of gold-thiol nanoparticles, formed at air-water interface at different surface pressure, on to silicon surface have been studied using two complementary techniques, X-ray reflectivity and atomic force microscopy (AFM). Networklike nanopatterns, observed through AFM, of the in-plane aggregated nanoparticles can be attributed to the late stage drying of the liquid trapped in the islands formed by nanoparticles. During drying process the trapped liquid leaves pinholes in the islands which by the process of nucleation and growth carry the mobile nanoparticles on their advancing fronts such that the nanoparticles are trapped at the boundaries of similar adjacent holes. This process continues bringing about in-plane as well as out-of-plane restructuring in the monolayer until the liquid evaporates completely rendering a patterned structure to the islands and instability in the monolayer is then stabilized
Resonant enhancement of ultracold photoassociation rate by electric field induced anisotropic interaction
We study the effects of a static electric field on the photoassociation of a
heteronuclear atom-pair into a polar molecule. The interaction of permanent
dipole moment with a static electric field largely affects the ground state
continuum wave function of the atom-pair at short separations where
photoassociation transitions occur according to Franck-Condon principle.
Electric field induced anisotropic interaction between two heteronuclear ground
state atoms leads to scattering resonances at some specific electric fields.
Near such resonances the amplitude of scattering wave function at short
separation increases by several orders of magnitude. As a result,
photoaasociation rate is enhanced by several orders of magnitude near the
resonances. We discuss in detail electric field modified atom-atom scattering
properties and resonances. We calculate photoassociation rate that shows giant
enhancement due to electric field tunable anisotropic resonances. We present
selected results among which particularly important are the excitations of
higher rotational levels in ultracold photoassociation due to electric field
tunable resonances.Comment: 14 pages,9 figure
Accounting for the effect of heterogeneous plastic deformation on the formability of aluminium and steel sheets
Forming Limit Curves characterise ‘mean’ failure strains of sheet metals. Safety levels from the curves define the deterministic upper limit of the processing and part design window, which can be small for high strength, low formability materials.
Effects of heterogeneity of plastic deformation, widely accepted to occur on the microscale, are neglected. Marciniak tests were carried out on aluminium alloys (AA6111-T4, NG5754-O), dual-phase steel (DP600) and mild steel (MS3). Digital image correlation was used to measure the effect of heterogeneity on failure. Heterogeneity, based on strain variance was modelled with the 2-component Gaussian Mixture Model and a framework was proposed to 1) identify the onset of necking and to 2) re-define formability as a probability to failure.
The result were ‘forming maps’ in major-minor strain space of contours of constant probability (from probability, P=0 to P=1), which showed how failure risk increased with major strain. The contour bands indicated the unique degree of heterogeneity in each material. NG5754-O had the greatest width (0.07 strain) in plane strain and MS3 the lowest (0.03 strain). This novel characterisation will allow engineers to balance a desired forming window for a component design with the risk to failure of the material
- …